|本期目录/Table of Contents|

[1]陈炳辉,龚狄荣?鄢.钴系催化剂催化共轭二烯烃聚合研究进展[J].合成橡胶工业,2024,2:169-179.
 CHEN Bing-hui,GONG Di-rong.Research progress in polymerization of conjugated dienes catalysized by cobalt based catalysts[J].China synthetic rubber industy,2024,2:169-179.
点击复制

钴系催化剂催化共轭二烯烃聚合研究进展(PDF)

《合成橡胶工业》[ISSN:1000-1255/CN:62-1036/TQ]

期数:
2024年2期
页码:
169-179
栏目:
出版日期:
1900-01-01

文章信息/Info

Title:
Research progress in polymerization of conjugated dienes catalysized by cobalt based catalysts
文章编号:
1000-1255(2024)02-0169-011
作者:
陈炳辉龚狄荣?鄢
宁波大学 材料科学与化学工程学院,浙江 宁波 315211
Author(s):
CHEN Bing-hui GONG Di-rong
School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
关键词:
钴系催化剂丁二烯异戊二烯配体催化活性选择性聚合机理综述
Keywords:
cobalt based catalyst butadiene isoprene ligand catalytic activity selective polymerization mechanism review
分类号:
TQ 333
DOI:
DOI:10.19908/j.cnki.ISSN1000-1255.2024.02.0169
文献标识码:
A
摘要:
综述了钴系催化剂在共轭二烯烃聚合领域的发展,详细总结了使用不同种类钴催化体系和含不同类型配体的钴配合物催化丁二烯、异戊二烯等共轭二烯烃聚合的催化活性和对聚合物微观结构(区域规整度、顺式-1,4-结构、反式-1,4-结构、1,2-结构和3,4-结构)及其立构规整度(间规度、等规度、微观结构序列分布)、聚合物分子量及其分布等的影响,展望了钴系催化剂在催化共轭二烯烃聚合方面的研究方向。
Abstract:
The development of cobalt based catalysts in the field of conjugated diene polymerization was reviewed. The catalytic activity of using different types of cobalt catalytic systems and cobalt complexes containing different types of ligands for the polymerization of conjugated dienes such as butadiene and isoprene, as well as the effect on the microstructure of polymers (regional regularity, cis-1,4 -unit, trans-1,4-unit, 1,2-unit, and 3,4-unit) and their stereoregularity (inter regularity, iso regularity, microstructure sequence distribution) were explored in detail with 76 references. The influence of polymer molecular weight and its distribution were also reviewed, and the research direction of cobalt catalysts in catalysizing the polymerization of conjugated dienes was prospected.

参考文献/References

[1] Cooper W. Aspects of mechanism of coordination polymerization of conjugated dienes[J]. Industrial and Engineering Chemistry Product Research and Development, 1970, 9(4): 457-466.[2] Natta C. Stereospecific polymerizations[J]. Journal of Polymer Science, 1960, 48(150): 219-239.[3] Gippin M. Stereoregular polymerization of butadiene with alkylaluminum chlorides and cobalt octoate[J]. Industrial and Engineering Chemistry Product Research and Development, 1965, 4(3): 160-167.[4] Furukawa J, Haga K, Kobayashi E, et al. Cis-vinyl-1:1 polymer of butadiene[J]. Polymer Journal, 1971, 2(3): 371-378.[5] Sivaram S, Upadhyay V K. Synthesis of high-cis-polybutadiene using cobalt(Ⅱ)-2-ethylhexoate modified triethylaluminum ca-talyst[J]. Journal of Macromolecular Science (Part A):Pure and Applied Chemistry, 1992, 29(sup 1): 13-19.[6] Nath D C D, Shiono T, Ikeda T. Polymerization of 1,3-butadiene by cobalt dichloride activated with various methylaluminoxanes[J]. Applied Catalysis A: General, 2003, 238(2): 193-199.[7] Park Ji Hae, Kim Ahreum, Jun Sung Hae, et al. Butadiene polymerization catalyzed by tri(aryloxo)aluminum adduct of cobalt acetate[J]. Bulletin of the Korean Chemical Society, 2012, 33(12): 4028-4034.[8] Endo K, Hatakeyama N. Stereospecific and molecular weight-controlled polymerization of 1,3-butadiene with Co(acac)3-MAO catalyst[J]. Journal of Polymer Science (Part A): Polymer Chemistry, 2001, 39(16): 2793-2798.[9] Nath D C D, Shiono T, Ikeda T. Effects of halogen ligands on 1,3-butadiene polymerization with cobalt dihalides and methylaluminoxane[J]. Macromolecular Chemistry and Physics, 2002, 203(9): 1171-1177.[10] Glebova N N, Gavrilenko I F, Chausova O V, et al. Activity and stereospecificity of cobalt-methylaluminoxane catalyst in butadiene polymerization[J]. Petroleum Chemistry, 2006, 46(4): 274-275.[11] Sharaev O K, Kostitsyna N N, Glebova N N, et al. Polymerization of butadiene catalyzed by a cobalt-containing catalyst in aliphatic media[J]. Polymer Science (Series B), 2006, 48(5): 274-276.[12] Lee Hanbaek, Do Seunghyun, Lee Seunghwon, et al. 1,3-butadiene polymerization using binary, ternary and quaternary cobalt catalysts for high 1,4-polybutadiene[J]. Polymer, 2014, 55(25): 6483-6487.[13] Akhyari S, Nasirov F A, Janibayov N. Controlled one-step synthesis of hyperbranched 1,4-cis+1,2-polybutadiene by using novel catalytic dithio system[J]. Journal of Polymer Research, 2017, 24(7): 108.[14] Cooper W, Eaves D E, Vaughan G, et al. Electron donors in diene polymerization[M]. 1966: 46-66.[15] Ichikawa M, Takeuchi Y, Kogure A, et al. Process for the catalytic preparation of 1,2-polybutadiene having a high percentage of vinyl configuration: US, 3498963[P]. 1970-03-03.[16] Hamada H, Sugiura S, Ueno H. Process for the preparation of 1,2-polybutadiene: US, 3778424[P]. 1973-12-11.[17] Byrikhin V S, Luzina N N, Tverskon V A, et al. Problems of the polymerization mechanism of diene hydrocarbons in the pre-sence of cobalt catalysts[J]. Polymer Science U.S.S.R., 1975, 17(3): 767-773.[18] Ashitaka H, Ishikawa H, Ueno H, et al. Syndiotactic 1,2-polybutadiene with Co-CS2 catalyst system. I. Preparation, pro-perties, and application of highly crystalline syndiotactic 1,2-polybutadiene[J]. Journal of Polymer Science: Polymer Che-mistry Edition, 1983, 21(6): 1853-1860.[19] Ashitaka H, Jinda K, Ueno H. Syndiotactic 1,2-polybutadiene with Co-CS2 catalyst system. Ⅱ. Catalysts for stereospecific polymerization of butadiene to syndiotactic 1,2-polybutadiene[J]. Journal of Polymer Science: Polymer Chemistry Edition, 1983, 21(7): 1951-1972.[20] Ashitaka H, Inaishi K, Ueno H. Syndiotactic 1,2-polybutadiene with Co-CS2 catalyst system. Ⅲ. 1H- and 13C-NMR study of highly syndiotactic 1,2-polybutadiene[J]. Journal of Polymer Science: Polymer Chemistry Edition, 1983, 21(7): 1973-1988.[21] Ashitaka H, Jinda K, Ueno H. Syndiotactic 1,2-polybutadiene with Co-CS2 catalyst system. Ⅵ. Mechanism of syndiotactic polymerization of butadiene with cobalt compounds-organoaluminum-CS2[J]. Journal of Polymer Science: Polymer Chemistry Edition, 1983, 21(7): 1989-1995.[22] Nath D C D, Shiono T, Ikeda T. Copolymerization of 1,3-butadiene and isoprene with cobalt dichloride/methylaluminoxane in the presence of triphenylphosphine[J]. Journal of Polymer Science (Part A): Polymer Chemistry, 2002, 40(17): 3086-3092.[23] Cai Zhengguo, Shinzawa Masahito, Nakayama Yuushou, et al. Synthesis of regioblock polybutadiene with CoCl2-based catalyst via reversible coordination of lewis base[J]. Macromolecules, 2009, 42(20): 7642-7643.[24] Jang Youngchan, Kim Pilsung, Lee Hosull. Electronic and steric effects of phosphine ligand on the polymerization of 1,3-buta-diene using Co-based catalyst[J]. Macromolecules, 2002, 35(4): 1477-1480.[25] Jang Youngchan, Kim Pilsung, Jeong Ho Young, et al. Effects of polarizability and electronic character of phosphine ligand on the polymerization of 1,3-butadiene using Co-based catalyst[J]. Journal of Molecular Catalysis A: Chemical, 2003, 206(1/2): 29-36.[26] Monteil V, Bastero A, Mecking S. 1,2-polybutadiene latices by catalytic polymerization in aqueous emulsion[J]. Macromolecules, 2005, 38(13): 5393-5399.[27] Yakovlev V A, Gavrilenko I F, Glebova N N, et al. Polymerization of isoprene with cobalt catalysts[J]. Polymer Science (Series B), 2014, 56(1): 31-34.[28] Takeuchi M, Shiono T, Soga K. Polymerization of 1,3-butadiene with the catalyst system composed of a cobalt compound and methylaluminoxane[J]. Polymer International, 1992, 29(3): 209-212.[29] Ricci G, Forni A, Boglia A, et al. Synthesis and X-ray structure of CoCl2(PiPrPh2)2. A new highly active and stereospecific catalyst for 1,2 polymerization of conjugated dienes when used in association with MAO[J]. Macromolecules, 2005, 38(4): 1064-1070.[30] Ricci G, Forni A, Boglia A, et al. Synthesis, structure and butadiene polymerization behavior of CoCl2(PRxPh3-x)2 (R=methyl, ethyl, propyl, allyl, isopropyl, cyclohexyl; x=1, 2). Influence of the phosphorous ligand on polymerization stereoselectivity[J]. Journal of Organometallic Chemistry, 2005, 690(7): 1845-1854.[31] Ricci G, Motta T, Boglia A, et al. Synthesis, characterization, and crystalline structure of syndiotactic 1,2-polypentadiene: The trans polymer[J]. Macromolecules, 2005, 38(20): 8345-8352.[32] Ricci G, Leone G, Boglia A, et al. Cis-1,4-alt-3,4 polyisoprene: Synthesis and characterization[J]. Macromolecules, 2009, 42(23): 9263-9267.[33] Ricci G, Leone G, Boglia A, et al. Synthesis and characterization of isotactic 1,2-poly(E-3-methyl-1,3-pentadiene). Some remarks about the influence of monomer structure on polymerization stereoselectivity[J]. Macromolecules, 2009, 42(8): 3048-3056.[34] Ricci G, Leone G, Pierro I, et al. Novel cobalt dichloride complexes with hindered diphenylphosphine ligands: Synthesis, characterization, and behavior in the polymerization of butadiene[J]. Molecules, 2019, 24(12): 2308.[35] Ricci G, Leone G, Zanchin G, et al. Some novel cobalt diphenylphosphine complexes: Synthesis, characterization, and behavior in the polymerization of 1,3-butadiene[J]. Molecules, 2021, 26(13): 4067.[36] Ricci G, Forni A, Boglia A, et al. Synthesis, structure, and butadiene polymerization behavior of alkylphosphine cobalt(Ⅱ) complexes[J]. Journal of Molecular Catalysis (A): Chemical, 2005, 226(2): 235–241.[37] Ricci G, Boccia A C, Leone G, et al. Novel allyl cobalt phosphine complexes: Synthesis, characterization and behavior in the polymerization of allene and 1,3-dienes[J]. Catalysts, 2017, 7(12): 381.[38] Liu Heng, Wang Feng, Jia Xiangyu, et al. Synthesis, characte-rization, and 1,3-butadiene polymerization studies of Co(Ⅱ), Ni(Ⅱ), and Fe(Ⅱ) complexes bearing 2-(N-arylcarboximidoylchloride)quinoline ligand[J]. Journal of Molecular Catalysis A: Chemical, 2014, 391: 25-35.[39] Fang Liang, Zhao Wenpeng, Han Chao, et al. Isoprene polymerization with pyrazolylimine cobalt(Ⅱ) complexes: Manipulation of 3,4-selectivities by ligand design and use of triphenylphosphine[J]. European Journal of Inorganic Chemistry, 2019, 2019(5): 609-616.[40] Zhang Xin, Zhu Gang, Mahmood Q, et al. Iminoimidazole-based Co(Ⅱ) and Fe(Ⅱ) complexes: Syntheses, characterization, and catalytic behaviors for isoprene polymerization[J]. Journal of Polymer Science (Part A): Polymer Chemistry, 2019, 57(7): 767-775.[41] Wang Baolin, Liu Heng, Tang Tao, et al. Cis-1,4 selective coordination polymerization of 1,3-butadiene and copolymerization with polar 2-(4-methoxyphenyl)-1,3-butadiene by acenaphthene-based α-diimine cobalt complexes featuring intra-ligand π-π stacking interactions[J]. Polymers, 2021, 13(19): 3329.[42] Dai Quanquan, Jia Xiangyu, Yang Feng, et al. Iminopyridine-based cobalt(Ⅱ) and nickel(Ⅱ) complexes: Synthesis, cha-racterization, and their catalytic behaviors for 1,3-butadiene polymerization[J]. Polymers, 2016, 8(1): 12.[43] Guo Ling, Jing Xing, Xiong Sheng, et al. Influences of alkyl and aryl substituents on iminopyridine Fe(Ⅱ)-and Co(Ⅱ)-catalyzed isoprene polymerization[J]. Polymers, 2016, 8(11): 389.[44] Wang Xinxin, Fan Liang, Huang Chenhuang, et al. Highly cis-1,4 selective polymerization of isoprene promoted by α-diimine cobalt(Ⅱ) chlorides[J]. Journal of Polymer Science (Part A): Polymer Chemistry, 2016, 54(22): 3609-3615.[45] Alnajrani M N, Mair F S. Bidentate forms of β-triketimines: Syntheses, characterization and outstanding performance of enamine-diimine cobalt complexes in isoprene polymerization[J]. Dalton Transactions, 2016, 45(25): 10435-10446.[46] Kim Jae Sung, Ha Chang-Sik, Kim I. Highly stereospecific polymerizations of 1,3-butadiene with cobalt(Ⅱ) pyridyl bis(imine) complexes[J]. e-Polymers, 2006, 6(1): 347-356.[47] Appukuttan V, Zhang Lin, Ha Chang-Sik, et al. Highly active and stereospecific polymerizations of 1,3-butadiene by using bis(benzimidazolyl)amine ligands derived Co(Ⅱ) complexes in combination with ethylaluminum sesquichloride[J]. Polymer, 2009, 50(5): 1150-1158.[48] Appukuttan V, Zhang Lin, Ha Ju Young, et al. Stereospecific polymerizations of 1,3-butadiene catalyzed by Co(Ⅱ) comple-xes ligated by 2,6-bis(benzimidazolyl)pyridines[J]. Journal of Molecular Catalysis A: Chemical, 2010, 325(1): 84-90.[49] Cariou R, Chirinos J J, Gibson V C, et al. The effect of the central donor in bis(benzimidazole)-based cobalt catalysts for the selective cis-1,4-polymerisation of butadiene[J]. Dalton Tran-sactions, 2010, 39(38): 9039-9045.[50] Gong Dirong, Jia Xiaoyu, Wang Baolin, et al. Synthesis, cha-racterization, and butadiene polymerization of iron(Ⅲ), iron(Ⅱ) and cobalt(Ⅱ) chlorides bearing 2,6-bis(2-benzimidazolyl)pyridyl or 2,6-bis(pyrazol)pyridine ligand[J]. Journal of Organometallic Chemistry, 2012, 702: 10-18.[51] Gong Dirong, Jia Weiguo, Chen Tao, et al. Polymerization of 1,3-butadiene catalyzed by pincer cobalt(Ⅱ) complexes derived from 2-(1-arylimino)-6-(pyrazol-1-yl)pyridine ligands[J]. Applied Catalysis (A): General, 2013, 464/465: 35-42.[52] Gong Dirong, Liu Wen, Pan Weijing, et al. Tunable regioselectivity in 1,3-butadiene polymerization by using 2,6-bis(dimethyl-2-oxazolin-2-yl)pyridine incorporated transition metal (Cr, Fe and Co) catalysts[J]. Journal of Molecular Catalysis (A): Chemical, 2015, 406: 78-84.[53] Nobbs J D, Tomov A K, Cariou R, et al. Thio-pybox and thio-phebox complexes of chromium, iron, cobalt and nickel and their application in ethylene and butadiene polymerisation catalysis[J]. Dalton Transactions, 2012, 41(19): 5949-5964.[54] He Aihua, Wang Gang, Zhao Wenjing, et al. High cis-1,4 polyisoprene or cis-1,4/3,4 binary polyisoprene synthesized using 2-(benzimidazolyl)-6-(1-(arylimino)ethyl)pyridine cobalt(Ⅱ) dichlorides[J]. Polymer International, 2013, 62(12): 1758-1766.[55] Alnajrani M N, Mair F S. The behaviour of β-triketimine cobalt complexes in the polymerization of isoprene[J]. RSC Advances, 2015, 5(57): 46372-46385.[56] Liu Wen, Pan Weijing, Wang Peng, et al. Synthesis of mixed-ligand cobalt complexes and their applications in high cis-1,4-selective butadiene polymerization[J]. Inorganica Chimica Acta, 2015, 436: 132-138.[57] Gong Dirong, Zhang Xuequan, Huang Kuowei. Regio- and stereo-selective polymerization of 1,3-butadiene catalyzed by phosphorus-nitrogen PN3-pincer cobalt(Ⅱ) complexes[J]. Dalton Transactions, 2016, 45(48): 19399-19407.[58] Chen Huafeng, Pan Weijing, Huang Kuowei, et al. Controlled polymerization of isoprene promoted by a type of hemilabile X=PN3 (X=O, S) ligand supported cobalt(Ⅱ) complexes: The role of a hemilabile donor on the level of control[J]. Polymer Che-mistry, 2017, 8(11): 1805-1814.[59] Jia Xiaoyu, Zhang Xuequan, Gong Dirong. 1,2 Enriched polymerization of isoprene by cobalt complex carrying aminophosphory fused (PN3) ligand[J]. Journal of Polymer Science (Part A): Polymer Chemistry, 2018, 56(20): 2286-2293.[60] Zhao Junyi, Chen Huafeng, Li Wenxin, et al. Polymerization of isoprene promoted by aminophosphine(ory)-fused bipyridine cobalt complexes: Precise control of molecular weight and cis-1,4-alt-3,4 sequence[J]. Inorganic Chemistry, 2018, 57(7): 4088-4097.[61] Li Wenxin, Zhao Junyi, Zhang Xuequan, et al. Capability of PN3-type cobalt complexes toward selective (co-)polymerization of myrcene, butadiene, and isoprene: Access to biosourced polymers[J]. Industrial & Engineering Chemistry Research, 2019, 58(8): 2792-2800.[62] Xu Yuechao, Zhao Junyi, Ying Weilun, et al. Stereo-polyme-rization of 1,3-butadiene by cobalt catalysts in the presence of external donor: Access to 1,2-syndiotactic polybutadiene with tunable properties[J]. Industrial & Engineering Chemistry Research, 2019, 58(34): 15445-15452.[63] Gong Dirong, Ying Weilun, Zhao Junyi, et al. Controlling external diphenylcyclohexylphosphine feeding to achieve cis-1,4-syn-1,2 sequence controlled polybutadienes via cobalt catalyzed 1,3-butadiene polymerization[J]. Journal of Catalysis, 2019, 377: 367-377.[64] Gong Dirong, Tang Fuming, Xu Yuechao, et al. Cobalt cata-lysed controlled copolymerization: An efficient approach to bifunctional polyisoprene with enhanced properties[J]. Polymer Chemistry, 2021, 12(11): 1653-1660.[65] Xu Yuechao, Zhao Junyi, Gan Qiao,et al. Synthesis and properties investigation of hydroxyl functionalized polyisoprene prepared by cobalt catalyzed co-polymerization of isoprene and hydroxylmyrcene[J]. Polymer Chemistry, 2020, 11(12): 2034-2043.[66] Tang Fuming, Gong Dirong. Polymerization of butadiene, isoprene and 1-substituted dienes using cobalt catalysts[J]. Inorganica Chimica Acta, 2022, 539: 121011.[67] Endo K, Kitagawa T, Nakatani K. Effect of an alkyl substituted in salen ligands on 1,4-cis selectivity and molecular weight control in the polymerization of 1,3-butadiene with (salen)Co(Ⅱ) complexes in combination with methylaluminoxane[J]. Journal of Polymer Science (Part A): Polymer Chemistry, 2006, 44(13): 4088-4094.[68] Chandran Deepak, Kwak Chang Hoon, Ha Chang-Sik, et al. Polymerization of 1,3-butadiene by bis(salicylaldiminate) cobalt(Ⅱ) catalysts combined with organoaluminium cocatalysts[J]. Catalysis Today, 2008, 131(1): 505-512.[69] Gong Dirong, Wang Baolin, Jia Xiaoyu, et al. The enhanced catalytic performance of cobalt catalysts towards butadiene polymerization by introducing a labile donor in a salen ligand[J]. Dalton Transactions, 2014, 43(10): 4169-4178.[70] Jia Xiaoyu, Li Wenxin, Zhao Junyi, et al. Dual catalysis of the selective polymerization of biosourced myrcene and methyl methacrylate promoted by salicylaldiminato cobalt(Ⅱ) complexes with a pendant donor[J]. Organometallics, 2019, 38(2): 278-288.[71] Gippin M. Polymerization of butadiene with alkylaluminum and cobalt chloride[J]. Rubber Chemistry and Technology, 1962, 35(4): 1066-1082.[72] Zgonnik V N, Dolgoplosk B A, Nikolayev N I, et al. Effect of water on the polymerization of butadiene on homogenous “cobalt” catalysts[J]. Polymer Science U.S.S.R., 1965, 7(2): 338-342.[73] Ai Peifei, Chen Lin, Guo Yintian, et al. Polymerization of 1,3- butadiene catalyzed by cobalt(Ⅱ) and nickel(Ⅱ) complexes bearing imino- or amino- pyridyl alcohol ligands in combination with ethylaluminum sesquichloride[J]. Journal of Organometallic Chemistry, 2012, 705: 51-58.[74] Lv Sui, Jie Suyun, Li Bogeng. Highly active and stereospecific polymerization of 1,3- butadiene catalyzed by bis{[2- (4,5-diphenylimidazolyl)phenylimino]phenolate}cobalt(Ⅱ) complexes [J]. Journal of Organometallic Chemistry, 2015, 799-800: 108-114.[75] Yang Dang, Gan Qiao, Chen Huafeng, et al. Polymerization of conjugated dienes and olefins promoted by cobalt complexes supported by phosphine oxide ligands [J]. Inorganica Chimica Acta, 2019, 496: 119046.[76] Chen Liang, Ai Peifei, Gu Jie, et al. Stereospecific polymerization of 1,3-butadiene catalyzed by cobalt complexes bearing N-containing diphosphine PNP ligands[J]. Journal of Organometallic Chemistry, 2012, 716: 55-61.

备注/Memo

备注/Memo:
浙江省自然科学基金资助项目(LY 21 B 040001);宁波市自然科学基金资助项目(202003 N 4105)。
更新日期/Last Update: 1900-01-01