|本期目录/Table of Contents|

[1]冯小亚,魏凯杰,胡彦杰?鄢.无机氧化物对氟硅橡胶耐热性能的影响[J].合成橡胶工业,2024,2:147-152.
 FENG Xiao-ya,WEI Kai-jie,HU Yan-jie.Effect of inorganic oxides on heat resistance of fluorosilicone rubber[J].China synthetic rubber industy,2024,2:147-152.
点击复制

无机氧化物对氟硅橡胶耐热性能的影响(PDF)

《合成橡胶工业》[ISSN:1000-1255/CN:62-1036/TQ]

期数:
2024年2期
页码:
147-152
栏目:
出版日期:
2024-03-15

文章信息/Info

Title:
Effect of inorganic oxides on heat resistance of fluorosilicone rubber
文章编号:
1000-1255(2024)02-0147-06
作者:
冯小亚魏凯杰胡彦杰?鄢
华东理工大学 材料科学与工程学院,上海 200237
Author(s):
FENG Xiao-ya WEI Kai-jie HU Yan-jie
School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
关键词:
氟硅橡胶耐热剂无机氧化物硫化特性热稳定性拉伸性能
Keywords:
fluorosilicone rubber heat-resistant additive inorganic oxide curing characteristics thermal stability tensile property
分类号:
TQ 333.93
DOI:
DOI:10.19908/j.cnki.ISSN1000-1255.2024.02.0147
文献标识码:
B
摘要:
以自制纳米颗粒二氧化钛(TiO2)及铁掺杂二氧化钛(TiO2/Fe2O3)作为耐热剂,研究了其对氟硅橡胶热稳定性和耐热空气老化性能的影响规律,分析了氟硅橡胶在空气中热失重5%时的分解产物成分及氟硅橡胶在热老化前后特征基团含量的变化,并对比研究了商用耐热剂纳米氧化铈(CeO2)、三氧化二铁(Fe2O3)和三氧化二铝(Al2O3)对氟硅橡胶性能的影响。结果表明,当纳米耐热剂质量分数为2%时,氟硅橡胶在空气中的5%热失重温度从高到低依次为添加TiO2/Fe2O3、TiO2、Fe2O3、CeO2、Al2O3试样和空白样;添加了纳米TiO2/Fe2O3复合耐热剂的氟硅橡胶的5%热失重温度达到了453 ℃,比空白样提高了47 ℃。纳米TiO2/Fe2O3复合耐热剂能显著抑制氟硅橡胶含氟侧基的氧化,这是氟硅橡胶耐热性能提高的主要原因。
Abstract:
The effects of self-made nano particles titanium dioxide (TiO2) and iron-doped titanium dioxide (TiO2/Fe2O3) as heat-resistant additives on thermal stability and tensile properties of fluorosilicon rubber after hot air aging were studied. The decomposition products of fluorosilicon rubber at 5% weight loss in air and the content of characteristic groups of fluorosilicon rubber before and after thermal aging were analyzed. The effects of commercial heat-resistant additives, such as nano ceria (CeO2), ferric oxide (Fe2O3) and aluminum trioxide (Al2O3) on fluorosilicone rubber were compared. The results showed that when the mass fraction of nano heat- resistant additive was 2%, the 5% weight loss temperature of fluorosilicone rubber in air from high to low was TiO2/Fe2O3, TiO2, Fe2O3, CeO2, Al2O3 samples and blank sample. The 5% weight loss temperature of fluorosilicone rubber with nano-TiO2/Fe2O3 heat-resistant additive reached 453 ℃, which was 47 ℃ higher than that of blank sample. Nano-TiO2/Fe2O3 heat-resistant additive could significantly inhibit oxidation of fluorine-containing side groups of fluorosilicone rubber, which was the main reason for improvement of the heat resistance of fluorosilicone rubber.

参考文献/References

[1] Xu Zehua, Zhang Yanbin, Zhou Jin, et al. Study on high-temperature composite properties of fluorosilicone rubber with nano-Sb2O3[J]. Journal of Applied Polymer Science, 2020, 137(42): 49302.[2] So Jaeii, Lee Chungsoo, Kim Byeongseok, et al. Improvement of heat resistance of fluorosilicone rubber employing vinyl-functionalized POSS as a chemical crosslinking agent[J]. Polymers, 2023, 15(5): 1300.[3] Han Ruijie, Li Yilong, Zhu Qingsong, et al. Research on the preparation and thermal stability of silicone rubber composites: A review[J]. Composites (Part C): Open Access, 2022: 100249.[4] Gan Tengfei, Shentu Baoqing, Weng Zhixue. Modification of CeO2 and its effect on the heat-resistance of silicone rubber[J]. Chinese Journal of Polymer Science, 2008, 26(4): 489-494.[5] Han Ruijie, Wang Zhilong, Zhang Yinghe. Thermal stability of CeO2/graphene/phenyl silicone rubber composite[J]. Polymer Testing. 2019, 75: 277-283.[6] He Qiang, Wang Guangfei, Zhang Yong, et al. Thermo-oxidative ageing behavior of cerium oxide/silicone rubber[J]. Journal of Rare Earths, 2020, 38(4): 436-444.[7] Shentu Baoqing, Gan Tengfei, Weng Zhixue. Modification of Fe2O3 and its effect on the heat-resistance of silicone rubber[J]. Journal of Applied Polymer Science. 2010, 113(5): 3202-3206.[8] Li Hongyan, Tao Sen, Huang Yanhua, et al. The improved thermal oxidative stability of silicone rubber by using iron oxide and carbon nanotubes as thermal resistant additives[J]. Composites Science and Technology, 2013, 76: 52-60.[9] Feng Qikun, Zhang Dongli, Zha Junwei, et al. Thermal, electrical, and mechanical properties of addition-type liquid silicone rubber co-filled with Al2O3 particles and BN sheets[J]. Journal of Applied Polymer Science. 2020, 137(45): 49399.[10] Yao Yiying, Lu Guoquan, Boroyevich D, et al. Effect of Al2O3 fibers on the high-temperature stability of silicone elastomer[J]. Polymer, 2014, 55(16): 4232-4240.[11] Zhou Wenying, Qi Shuhua, Tu Chunchao, et al. Effect of the particle size of Al2O3 on the properties of filled heat-conductive silicone rubber[J]. Journal of Applied Polymer Science, 2007, 104(2): 1312-1318.[12] Silva V P, Paschoalino M P, Goncalves M C, et al. Silicone rubbers filled with TiO2: Characterization and photocatalytic activity[J]. Materials Chemistry and Physics, 2009, 113(1): 395-400.[13] Englert M, Minister F, Moussaoui A, et al. Mechanical pro-perties of thermo-oxidative aged silicone rubber thermally stabilized by titanium oxide based fillers[J]. Polymer Testing, 2022, 115: 107726.[14] Katz S, Lachman N, Hafif N, et al. Studying the physical and chemical properties of polydimethylsiloxane matrix reinforced by nanostructured TiO2 supported on mesoporous silica[J]. Polymers, 2023, 15(1): 81.[15] Choryath I, DeGroot Jr J V, Dipino M, et al. Fluorosilicone elastomers for high temperature performance: US, 2010166996A 1[P]. 2010-07-01.[16] Xu Xiang, Liu Junjie, Chen Pei, et al. The effect of ceria nanoparticles on improving heat resistant properties of fluorosilicone rubber[J]. Journal of Applied Polymer Science, 2016, 133(42): 1-8.[17] Qiu Jiedong, Wu Ting, Qu Jinping. Fabrication of iron oxide nanoparticle decorated boron nitride nanosheet for flame-retarding silicone rubber[J]. Materials Letters, 2021, 283: 128712.[18] 王荣华, 冯典英, 李晖, 等. 特种氟硅橡胶热空气老化的衰减全反射傅里叶变换红外光谱研究[J]. 合成橡胶工业, 2014, 37(3): 169- 172.[19] Sugama T, Pyatina T, Redline E, et al. Degradation of diffe-rent elastomeric polymers in simulated geothermal environments at 300 ℃[J]. Polymer Degradation and Stability, 2015, 120: 328-339.

备注/Memo

备注/Memo:
国家自然科学基金面上项目(21978088)。
更新日期/Last Update: 1900-01-01