|本期目录/Table of Contents|

[1]赵 烽,李 梦?鄢,赵 欣,等.过氧化苯甲酸-1,1-二甲基乙基酯/环氧大豆油丙烯酸酯复合材料的制备及固化工艺优化[J].合成橡胶工业,2023,5:388-393.
 ZHAO Feng,LI Meng,ZHAO Xin,et al.Preparation and curing process optimization of tert-butyl peroxy benzoate/acrylated epoxy soybean oil composites[J].China synthetic rubber industy,2023,5:388-393.
点击复制

过氧化苯甲酸-1,1-二甲基乙基酯/环氧大豆油丙烯酸酯复合材料的制备及固化工艺优化(PDF)

《合成橡胶工业》[ISSN:1000-1255/CN:62-1036/TQ]

期数:
2023年5期
页码:
388-393
栏目:
出版日期:
2023-10-15

文章信息/Info

Title:
Preparation and curing process optimization of tert-butyl peroxy benzoate/acrylated epoxy soybean oil composites
文章编号:
1000-1255(2023)05-0388-06
作者:
赵 烽李 梦?鄢赵 欣李 正
中国民用航空飞行学院 航空工程学院,四川 广汉 618301
Author(s):
ZHAO Feng LI Meng ZHAO Xin LI Zheng
Aviation Engineering Institute, Civil Aviation Flight University of China, Guanghan 618301, China
关键词:
过氧化苯甲酸-11-二甲基乙基酯环氧大豆油丙烯酸酯复合材料反应动力学固化工艺
Keywords:
tert-butyl peroxy benzoate acrylated epoxidized soybean oil composite reaction kinetics curing process
分类号:
TQ 323.5
DOI:
DOI:10.19908/j.cnki.ISSN1000-1255.2023.05.0388
文献标识码:
A
摘要:
采用含浸压缩成型工艺制备了过氧化苯甲酸-1,1-二甲基乙基酯(TBPB)/环氧大豆油丙烯酸酯(AESO)复合材料,对其固化过程及结构进行了考察。结果表明,基于Kissinger法及Starink法计算得到TBPB/AESO复合材料的反应活化能为78.803 kJ/mo;基于Malek法选择Sesthk-Berggren作为固化模型,拟合计算得到的固化动力学方程能较好地与实验数据吻合;优化的TBPB/AESO固化工艺为先缓慢升温至407 K,再快速升温至424 K恒温固化,最后缓慢升温至489 K并保持一定时间。
Abstract:
tert-butyl peroxy benzoate (TBPB)/acrylated epoxy soybean oil composite(AESO) composite was prepared by immersion compression for-ming technology, and its curing process and structure were investigated. The results showed that the reaction activation energy of TBPB/AESO composite calculated based on Kissinger method and Starink method was 78.803 kJ/mol. Sesthk-Berggren was selected as the curing model, and the calculated curing kinetics equation based on the Malek method fitted well with the experimental data. The optimized curing process of TBPB/AESO involved increasing slowly the temperature to 407 K, then increasing rapidly the temperature to 424 K for constant temperature curing, and finally increasing slowly the temperature to 489 K for a certain period of time.

参考文献/References

[1] 应俏, 唐辉, 罗大伟, 等. 环氧大豆油丙烯酸酯的固化与应用[J]. 热固性树脂, 2021, 36(1): 50-54.[2] 何明, 郭莹莹, 朱金, 等. 环氧大豆油固化动力学及产物性能研究[J]. 中国油脂, 2015, 40(10): 40-44.[3] Wang Honghua, Liu Bo, Liu Xiaoqing, et al. Synthesis of biobased epoxy and curing agents using rosin and the study of cure reactions[J]. Green Chemistry, 2008, 10(11): 1190-1196.[4] Tan Guoshan,Zhou Wenshen. Curing characteristics and thermal properties of epoxidized soybean oil based thermosetting resin[J]. Journal of the American Oil Chemists′ Society, 2011, 88(7): 915-923.[5] Liu Zengshe, Knetzer D A,Wang Jifu, et al. 3 D printing acrylated epoxidized soybean oil reinforced with functionalized cellulose by UV curing[J]. Journal of Applied Polymer Science, 2021, 139(4): 1-10.[6] Bakthavachalam K, Ayalew B, Zheng Ting, et al. Ultraviolet-initiated curing of natural fiber-reinforced acrylated epoxidized soybean oil composites[J]. SAE International Journal of Materials and Manufacturing, 2021, 14(4): 23-45.[7] Hu Fengshuo,Yadav S K, John J, et al. Epoxidized soybean oil modified using fatty acids as tougheners for thermosetting epoxy resins(Part 1)[J]. Journal of Applied Polymer Science, 2021, 138(24): 1-15.[8] Hu Fengshuo, La Scala, John J, et al. Epoxidized soybean oil modified using fatty acids as tougheners for thermosetting epoxy resins(Part 2): Effect of curing agent and epoxy molecular weight[J]. Journal of Applied Polymer Science, 2021, 138(24): 1758-1778.[9] Wang Yong, Cao Feng, Fu Yunlei, et al. Preparation of diene-based nanoparticles by semibatch microemulsion polymerization and their catalytic hydrogenation[J]. Catalysis Today, 2022, 407(178): 341-365.[10] Grishchuk S. Hybrid thermosets from vinyl ester resin and acrylated epoxidized soybean oil (AESO)[J]. Express Polymer Letters, 2010, 5(1): 2-11.[11] Liu Wendi, Xie Tianshun, Qiu Renhui. Styrene-free unsaturated polyesters for hemp fibre composites[J]. Composites Science and Technology, 2015, 120(4): 66-72.[12] 刘大晨, 张林. 聚硫橡胶对环氧树脂固化动力学及力学强度的影响[J]. 合成橡胶工业, 2020, 43(1): 43-47.[13] Vyazovkin S, Burnham A, Criado J, et al. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data[J]. Thermochimica Acta, 2011, 520(1/2): 1-19. [14] Malek J, Smrcka V. The kinetic analysis of the crystallization processes in glasses[J]. Thermochimica Acta, 1991, 186(1): 153-169.[15] Vecchio S, Rocco R D, Ferragina C, et al. Thermal and kinetic study of dehydration and de-composition processes for copper intercalated γ-zir-conium and γ-titanium phosphates[J]. Thermochimica Acta, 2005, 435(2): 181-187.[16] Prime R B. Differential scanning calorimetry of the epoxy cure reaction[J]. Polymer Engineering and Science, 1973, 13(5): 365-371.[17] 何端鹏, 高鸿, 于翔天, 等. 环氧树脂胶粘剂的固化模型、工艺设计以及试验验证[J]. 中国胶粘剂, 2020, 29(6): 11-16.

备注/Memo

备注/Memo:
四川省科技厅研发项目(2018 GZYZF 0066)
更新日期/Last Update: 1900-01-01