|本期目录/Table of Contents|

[1]郝振源a,李琬华a,吴友平a,等.载荷、速率和滑移角对天然橡胶复合材料磨损行为的影响[J].合成橡胶工业,2023,3:234-240.
 HAO Zhen-Yuana,LI Wan-Huaa,WU You-Pinga,et al.Effects of load, speed and slip angle on wear behaviors of natural rubber composites[J].China synthetic rubber industy,2023,3:234-240.
点击复制

载荷、速率和滑移角对天然橡胶复合材料磨损行为的影响(PDF)

《合成橡胶工业》[ISSN:1000-1255/CN:62-1036/TQ]

期数:
2023年3期
页码:
234-240
栏目:
出版日期:
2023-05-15

文章信息/Info

Title:
Effects of load, speed and slip angle on wear behaviors of natural rubber composites
文章编号:
1000-1255(2023)03-0234-07
作者:
郝振源a李琬华a吴友平ab?鄢
北京化工大学 a. 北京市先进弹性体工程技术研究中心; b. 材料科学与工程学院,北京 100029
Author(s):
HAO Zhen-Yuana LI Wan-Huaa WU You-Pingab
a. Beijing Advanced Elastomer Engineering Technology Research Center; b. School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
关键词:
载荷速率滑移角天然橡胶复合材料磨耗量表面温度能量损失磨损表面形貌
Keywords:
load speed slip angle natural rubber composites abrasion surface temperature energy loss wear surface morphology
分类号:
TQ 333
DOI:
DOI:10.19908/j.cnki.ISSN1000-1255.2023.03.0234
文献标识码:
B
摘要:
使用LAT 100型磨耗试验机研究了载荷、速率和滑移角对天然橡胶复合材料的磨耗量和表面温度的影响,确定了磨损过程中能量损失与磨耗量、侧向力和磨损表面形貌的关系。结果表明,随着载荷、速率和滑移角的增加,天然橡胶复合材料的磨耗量均增大,表面温度均升高;滑移角对天然橡胶复合材料的磨耗量和表面温度的影响最大,速率对天然橡胶复合材料磨耗量的影响最小,载荷对天然橡胶复合材料表面温度的影响最小;摩擦力对天然橡胶复合材料磨耗量的影响远小于侧向力,天然橡胶复合材料的磨耗量与磨损过程中的能量损失呈指数关系,指数约为2;天然橡胶复合材料表面滑移区域的磨损最为严重,其面积由侧向力在接触区域的分布决定。
Abstract:
The effects of load, speed and slip angle on the abrasion and surface temperature of natural rubber composites were investigated using LAT 100 laboratory abrasion tester, and the relationships between energy loss and abrasion, side force and wear surface morphology during the abrasion were established. The results showed that the abrasion and surface temperature of natural rubber composites increased with the increase in load, speed and slip angle. The slip angle had the greatest effect on the abrasion and surface temperature of natural rubber composites, the speed had the least effect on the abrasion of natural rubber composites, and the load had the minimal effect on the surface temperature of natural rubber composites. The effect of friction force on abrasion was much smaller than that of side force, the abrasion of natural rubber composites had an exponential relationship with the energy loss during the wear process, and the exponent was about 2. The abrasion was the severest in the slip region of natural rubber composites, and the area of the slip region was determined by the distribution of side force in the contact area.

参考文献/References

[1] Bhattacharya M, Bhowmick A K. Analysis of wear characteristics of natural rubber nanocomposites[J]. Wear, 2010, 269(1/2): 152-166.[2] Grosch K A. Rubber abrasion and tire wear[J]. Rubber Che-mistry and Technology, 2008, 81(3): 470-505.[3] Grosch K A. Rubber friction and its relation to tire traction[J]. Rubber Chemistry and Technology, 2007, 80(3): 379-411.[4] Nguyen V H, Zheng Dong, Schmerwitz F, et al. An advanced abrasion model for tire wear[J]. Wear, 2018, 396/397: 75-85.[5] Chang Xiangdong, Huang Haibo, Jiao Runnan, et al. Experimental investigation on the characteristics of tire wear particles under different non-vehicle operating parameters[J]. Tribology International, 2020, 150: 106354.[6] Schallamach A. The load dependence of rubber friction[J]. Proceedings of the Physical Society (Section B), 1952, 65(9): 657-661.[7] Schallamach A, Turner D M. The wear of slipping wheels[J]. Wear, 1960, 3(1): 1-25.[8] Hakami F, Pramanik A, Islam N, et al. Study of effective parameters on wear behavior of rubbers based on statistical methods[J]. Polymer Advanced Technologies, 2019, 30(6): 1415-1426.[9] Wu Yanping, Zhou Yang, Li Jinlong, et al. A comparative study on wear behavior and mechanism of styrene butadiene rubber under dry and wet conditions[J]. Wear, 2016, 356/357: 1-8.[10] Thavamani P, Bhowmick A K. Wear of tank track pad rubber vulcanizates by various rocks[J]. Rubber Chemistry and Technology, 1992, 65(1): 31-45.[11] 庞松, 刘欢欢, 于洋, 等. 高速高载下天然橡胶-反式聚异戊二烯橡胶复合材料的耐磨性[J]. 复合材料学报, 2022, 39(6): 2607-2618.[12] 刘欢欢, 庞松, 肖佶海, 等. 重载条件下填料体系对胎面橡胶复合材料耐磨性的影响[J]. 高分子材料科学与工程, 2022, 38(4): 103-110.[13] Salehi M, Noordermeer J W M, Reuvekamp L A E M, et al. Measuring rubber friction using a laboratory abrasion tester (LAT 100) to predict car tire dry ABS braking[J]. Tribology International, 2019, 131: 191-199.[14] Salehi M, Noordermeer J W M, Reuvekamp L A E M, et al. Understanding test modalities of tire grip and laboratory-road correlations with modeling[J]. Tribology Letters, 2021, 69(3): 116.[15] Grosch K A. Correlation between road wear of tires and computer road wear simulation using laboratory abrasion data[J]. Rubber Chemistry and Technology, 2004, 75(5): 791-814.[16] 赵慧, 陈家辉, 戴仲娟, 等. LAT 100磨耗试验机评价载重轮胎胎面耐磨性能条件的确定[J]. 轮胎工业, 2013, 33(9): 567-571.[17] Braun O M, Miyashita N, Fujii H, et al. On the load dependence of friction: Role of the long-range elastic coupling[J]. Tribology International, 2018, 123: 209-215.[18] Chen Da, Wu Jian, Wang Youshan, et al. High-speed tribology behaviors of aircraft tire tread rubber in contact with pavement[J]. Wear, 2021, 486/487: 204071.[19] Fortunato G, Ciaravola V, Furno A, et al. Dependency of rubber friction on normal force or load: Theory and experiment[J]. Tire Science and Technology, 2017, 45(1): 25-54.

备注/Memo

备注/Memo:
更新日期/Last Update: 1900-01-01