|本期目录/Table of Contents|

[1]王晨阳,邓 涛?鄢.高效硫化剂对氯丁橡胶硫化反应动力学参数及力学弛豫性能的影响[J].合成橡胶工业,2023,3:241-247.
 WANG Chen-yang,DENG Tao.Effect of high efficiency vulcanizing agent on vulcanization kinetic parameters and mechanical relaxation properties of neoprene[J].China synthetic rubber industy,2023,3:241-247.
点击复制

高效硫化剂对氯丁橡胶硫化反应动力学参数及力学弛豫性能的影响(PDF)

《合成橡胶工业》[ISSN:1000-1255/CN:62-1036/TQ]

期数:
2023年3期
页码:
241-247
栏目:
出版日期:
2023-05-15

文章信息/Info

Title:
Effect of high efficiency vulcanizing agent on vulcanization kinetic parameters and mechanical relaxation properties of neoprene
文章编号:
1000-1255(2023)03-0241-07
作者:
王晨阳邓 涛?鄢
青岛科技大学 高分子科学与工程学院,山东 青岛 266042
Author(s):
WANG Chen-yang DENG Tao
School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
关键词:
氯丁橡胶机械共混法三乙酰丙酮合铁硫化机理硫化反应动力学参数物理机械性能弛豫性能
Keywords:
chloroprene rubber mechanical blending ferric acetylacetonate vulcanization mechanism kinetic parameters of vulcanization reaction physical and mechanical property relaxation properties
分类号:
TQ 333.5
DOI:
DOI:10.19908/j.cnki.ISSN1000-1255.2023.03.0241
文献标识码:
B
摘要:
采用机械共混法制备了含有不同种类和用量硫化体系的氯丁橡胶硫化胶,考察了新型高效硫化剂三乙酰丙酮合铁[Fe(acac)3]对氯丁橡胶硫化机理、动力学参数及硫化胶力学弛豫行为的影响。结果表明,Fe(acac)3硫化体系在硫化过程中具有可循环硫化的特点,使用0.10份(质量,下同)Fe(acac)3时即可高效硫化氯丁橡胶;与传统金属氧化物硫化体系相比,当仅使用0.25份Fe(acac)3时氯丁橡胶硫化胶的拉伸强度最高且拉伸应力弛豫的平衡值最大;由于Fe(acac)3体系具有可循环参与硫化过程的特性,硫化胶于100 ℃热氧老化3 d后仍保持较大的压缩应力弛豫平衡值。
Abstract:
Chloroprene rubber vulcanizates containing different types and amounts of curing systems were prepared by mechanical blending, and the effects of a new high-efficiency curing agent, ferric acetylacetonate [Fe(acac)3] on the curing mechanism, kinetic parameters and mechanical relaxation behavior of chloroprene rubber were investigated. The results showed that the Fe(acac)3 curing system had the characteristics of being able to participate in the vulcanization cycle during the vulcanization process when Fe(acac)3 of 0.10 phr (mass, similarby hereinafter)was used, chloroprene rubber could be vulcanized efficiently. Compared with the traditional metal oxide curing system, the tensile strength was higher and the equilibrium value of tensile stress relaxation of the vulcanizate was larger when Fe(acac)3 of only 0.25 phr was used. After 3 d of thermo-oxidative aging at 100 ℃, the vulcanizates still maintained a high compressive stress relaxation equilibrium value due to the characteristics that Fe(acac)3 curing system was capable of participating in the vulcanization process circularly.

参考文献/References

[1] 杨清芝著. 实用橡胶工艺学[M]. 北京: 化学工业出版社, 2005: 38-39.[2] Dziemidkiewicz A, Pingot M, Maciejewska M. Metal comple-xes as new pro-ecological crosslinking agents for chloroprene rubber based on Heck coupling reaction[J]. Rubber Chemistry and Technology, 2019, 92(3): 589-597.[3] Mizoroki Tsutomu, Mori Kunio, Ozaki Atsumu. Arylation of olefin with aryl iodide catalyzed by palladium[J]. Bulletin of the Chemical Society of Japan, 1971, 44(2): 581.[4] Heck R F, Jr Nolley J P. Palladium-catalyzed vinylic hydrogen substitution reactions with aryl, benzyl, and styryl halides[J]. The Journal of Organic Chemistry, 1972, 37(14): 2320-2322.[5] Wang Aijing, Tian Minggang, Zuo Yujing, et al. Carbazole-siloxane based polymers for the selective detection of 4-nitrophenol and Fe3+[J]. Journal of Photochemistry and Photobiology (A): Chemistry, 2022, 430: 113961.[6] Güzel H D, ■al■■kan M, Baran T. Supported Pd nanoparticles on micro structured chitosan-MgAl layered double hydroxide hydrogel beads as a sustainable, effective, and recyclable nanocatalyst for Heck cross-coupling reactions[J]. Journal of Physics and Chemistry of Solids, 2022, 167: 110777.[7] Bulatov T M, Pugachev M V, Shtyrlin N V, et al. Novel approach to 6-alkenyl-substituted pyridoxine derivatives based on the Heck reaction[J]. Tetrahedron Letters, 2018, 59(33): 3220-3222.[8] Gholivand K, Salami R, Farshadfar K, et al. Synthesis and structural characterization of Pd (Ⅱ) and Cu (Ⅰ) complexes containing dithiophosphorus ligand and their catalytic activities for Heck reaction[J]. Polyhedron, 2016, 119: 267-276.[9] Bhanage B M, Fujita S, Arai M. Heck reactions with various types of palladium complex catalysts: Application of multiphase catalysis and supercritical carbon dioxide[J]. Journal of organometallic chemistry, 2003, 687(2): 211-218.[10] Ghosh T. Reductive Heck reaction: An emerging alternative in natural product synthesis[J]. ChemistrySelect, 2019, 4(16): 4747-4755.[11] Bhakta S, Ghosh T. Emerging nickel catalysis in Heck reactions: Recent developments[J]. Advanced Synthesis & Catalysis, 2020, 362(23): 5257-5274.[12] Gan Weiping, Xu Hui, Jin Xiuyun, et al. Recyclable palladium-loaded hyperbranched polytriazoles as efficient polymer catalysts for Heck reaction[J]. ACS Applied Polymer Mate-rials, 2019, 2(2): 677-684. [13] Huang Xiaolei, Teng Shenghan, Chi Robin Yonggui, et al. Enantioselective intermolecular Heck and reductive Heck reactions of aryl triflates, mesylates, and tosylates catalyzed by nickel[J]. Angewandte Chemie International Edition, 2021, 60(6): 2828-2832.[14] Kurandina D, Chuentragool P, Gevorgyan V. Transition-metal-catalyzed alkyl Heck-type reactions[J]. Synthesis, 2019, 51(5): 985-1005.[15] Matsude A, Hirano K, Miura M. Palladium-catalyzed intramolecular Mizoroki-Heck-type reaction of diarylmethyl carbonates[J]. Advanced Synthesis & Catalysis, 2020, 362(3): 518-522.[16] Wang Sasa, Yang Guoyu. Recent developments in low-cost TM-catalyzed Heck-type reactions (TM=transition metal, Ni, Co, Cu, and Fe)[J]. Catalysis Science & Technology, 2016, 6(9): 2862-2876.[17] Maties G, Gonzalez-Arellano C, Luque R, et al. Trans-ferulic acid valorization into stilbene derivatives via tandem decarboxylation/Heck coupling using Pd/Al-SBA-15 materials[J]. Materials Today Chemistry, 2022, 25: 100971.[18] Le Honghai, Lüpke T, Pham T, et al. Time dependent deformation behavior of thermoplastic elastomers[J]. Polymer, 2003, 44(16): 4589-4597.[19] Dziemidkiewicz A, Maciejewska M. CR composites with improved processing safety crosslinked via Heck′s reaction[J]. Journal of Applied Polymer Science, 2021, 138(9): 49922.[20] Dziemidkiewicz A, Anyszka R, Blume A, et al. Reaction mechanism of halogenated rubber crosslinking using a novel environmentally friendly curing system[J]. Polymer testing, 2020, 84: 106354.[21] Zhang Beilong, Wang Yongzhou, Wang Pingyue, et al. Study on vulcanization kinetics of constant viscosity natural rubber by using a rheometer MDR 2000[J]. Journal of Applied Polymer Science, 2013, 130(1): 47-53.[22] Rosca I D, Vergnaud J M. Study of process of cure of EPDM rubbers in moving die rheometer[J]. Plastics, rubber and composites, 2001, 30(6): 275-281.[23] Yang Hongmei, Liu Zhigang, Yang Yongzhu, et al. Rheologic studies on chemical cross-linking kinetics for LDPE[J]. Chinese Journal of Polymer Science, 2012, 30(3): 378-386.[24] Salimi A, Abbassi-Sourki F, Karrabi M, et al. Investigation on viscoelastic behavior of virgin EPDM/reclaimed rubber blends using generalized Maxwell model (GMM)[J]. Polymer Testing, 2021, 93: 106989.

备注/Memo

备注/Memo:
更新日期/Last Update: 1900-01-01