|本期目录/Table of Contents|

[1]杨海龙,赵志超,吴周权,等.石墨烯/橡胶复合材料的结构设计与性能研究进展[J].合成橡胶工业,2022,6:517-522.
 YANG Hai-long,ZHAO Zhi-chao,WU Zhou-quan,et al.Research advance in the structure design and properties of graphene/rubber composites[J].China synthetic rubber industy,2022,6:517-522.
点击复制

石墨烯/橡胶复合材料的结构设计与性能研究进展(PDF)

《合成橡胶工业》[ISSN:1000-1255/CN:62-1036/TQ]

期数:
2022年6期
页码:
517-522
栏目:
出版日期:
2022-11-15

文章信息/Info

Title:
Research advance in the structure design and properties of graphene/rubber composites
文章编号:
1000-1255(2022)06-0517-06
作者:
杨海龙赵志超吴周权钟启林董 静李付姣王勤芳李旭晖
1. 中国石油石油化工研究院 兰州化工研究中心, 兰州 730060; 2. 中国石油兰州石化公司 合成橡胶厂, 兰州 730060; 3. 浙江信汇新材料股份有限公司, 浙江 嘉兴 314201
Author(s):
YANG Hai-long1 ZHAO Zhi-chao1 WU Zhou-quan2 ZHONG Qi-lin1 DONG Jing1 LI Fu-jiao3 WANG Qin-fang1 LI Xu-hui1
1. Lanzhou Petrochemical Research Center, Petrochemical Research Institute, PetroChina, Lanzhou 730060, China; 2. Synthetic Rubber Plant, Lanzhou Petrochemical Company, PetroChina, Lanzhou 730060, China; 3. Zhejiang Xinhui New Materials Co Ltd, Jiaxing 314201, China
关键词:
石墨烯石墨烯改性杂化填料界面交联橡胶复合材料综述
Keywords:
graphene graphene modification hybrid filler interfacial cross-linking rubber composite review
分类号:
TQ 330.1+5
DOI:
DOI:10.19908/j.cnki.ISSN1000-1255.2022.06.0517
文献标识码:
A
摘要:
综述了近年来石墨烯/橡胶复合材料结构设计的研究进展,介绍了石墨烯/橡胶复合材料的制备方法,重点阐述了石墨烯的不同改性方法及复合材料的界面结构对石墨烯/橡胶复合材料性能的影响,最后对石墨烯/橡胶复合材料的结构设计和性能研究面临的挑战和发展方向进行了展望。
Abstract:
The research progress in the structural design of graphene/rubber composites was reviewed with 34 references and the preparation methods of graphene/rubber composites were introduced. In addition, the effects of different modification methods of graphene and the interface structure of the composites on the properties of graphene/rubber composites were also described. Finally, the challenges and development directions of the structure design and performance research of graphene/rubber composites were prospected.

参考文献/References

[1] Zhang Hao, Xing Wang, Li Hengyi, et al. Fundamental researches on graphene/rubber nanocomposites[J]. Advanced Industrial and Engineering Polymer Research, 2019, 2(1): 32-41.[2] Tang Zhenghai, Zhang Liqun, Feng Wenjiang, et al. Rational design of graphene surface chemistry for high-performance rubber/graphene composites[J]. Macromolecules, 2014, 47(24): 8663-8673.[3] Xue Chen, Gao Hanyang, Hu Yuchen, et al. Hyperelastic characteristics of graphene natural rubber composites and reinforcement and toughening mechanisms at multi-scale[J], Composite Structures, 2019, 228: 111365.[4] Ji Xuqiang, Xu Yuanhong, Zhang Wenling, et al. Review of functionalization structure and properties of graphene/polymer composite fibers[J]. Composites (Part A): Applied Science and Manufacturing, 2016, 87: 29-45.[5] Papageorgiou D G, Kinloch I A, Young R J. Mechanical pro- perties of graphene and graphene-based nanocomposites[J]. Progress in Materials Science, 2017, 90: 75-127.[6] 蒋静, 贾红兵, 王经逸, 等. 石墨烯/聚合物复合材料的研究进展[J]. 合成橡胶工业, 2011, 34(6): 482-488.[7] Istrate O M, Paton K R, Khan U, et al. Reinforcement in melt-processed polymer-graphene composites at extremely low graphene loading level[J]. Carbon, 2014, 78: 243-249.[8] Papageorgiou D G, Kinloch I A, Young R J. Graphene/elastomer nanocomposites[J]. Carbon, 2015, 95: 460-484.[9] Yaragalla S, Meera A P, Kalarikkal N, et al. Chemistry associated with natural rubber-graphene nanocomposites and its effect on physical and structural properties[J]. Industrial Crops and Products, 2015, 74: 792-802.[10] Lian Huiqin, Li Shuxin, Liu Kelong, et al. Study on modified graphene/butyl rubber nanocomposites (I): Preparation and characterization[J]. Polymer Engineering and Science, 2011, 51(11): 2254-2260.[11] Yang Zhijun, Liu Heng, Wu Siwu, et al. A green method for preparing conductive elastomer composites with interconnected graphene network via Pickering emulsion templating[J]. Chemical Engineering Journal, 2018, 342: 112-119.[12] Alexandre M, Dubois P. Polymer-layered silicate nanocompo-sites: Preparation, properties and uses of a new class of mate-rials[J]. Materials Science and Engineering (R): Reports A Review Journal, 2000, 28(1/2): 1-63.[13] Zhang Hao, Liu Jingsheng, Zhang Xuequan, et al. Preparation of ethylene-propylene-rubber/graphene nanocomposites via an in situ polymerization method with supported metallocene catalyst[J]. Journal of Nanoscience and Nanotechnology, 2017, 17(12): 9108-9113.[14] Li Ying, Xu Fan, Lin Zaishan, et al. Electrically and thermally conductive underwater acoustically absorptive graphene/rubber nanocomposites for multifunctional applications[J]. Nanoscale, 2017, 9(38): 14476-14485.[15] Dreyer D R, Park Sungjin, Bielawski C W, et al. The che-mistry of graphene oxide[J]. Chemical Society Reviews, 2010, 39(1): 228-240.[16] Ren Penggang, Yan Dingxiang, Ji Xu, et al. Temperature dependence of graphene oxide reduced by hydrazine hydrate[J]. Nanotechnology, 2011, 22(5): 055705.[17] Zhang Jiali, Yang Haijun, Shen Guangxia, et al. Reduction of graphene oxide via L-ascorbic acid[J]. Chemical Communication, 2010, 46(7): 1112-1114.[18] Shin Hyeon-jin, Kim Kikang, Benayad A, et al. Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance[J]. Advanced Functional Materials, 2009, 19(12): 1987-1992.[19] Zhou Junjun, Wei Laiyun, Wei Haitao, et al. The synthesis of graphene-based antioxidants to promote anti-thermal properties of styrene-butadiene rubber[J]. RSC Advances, 2017, 7(84): 53596-53603.[20] Zhong Bangchao, Jia Zhixin, Dong Huanhuan, et al. One-step approach to reduce and modify graphene oxide via vulcanization accelerator and its application for elastomer reinforcement[J]. Chemical Engineering Journal, 2017, 317: 51-59.[21] Luo Yanlong, Wang Runguo, Wang Wei, et al. Molecular dynamics simulation insight into two-component solubility para-meters of graphene and thermodynamic compatibility of graphene and styrene butadiene rubber[J]. The Journal of Physical Chemistry (C): Energy Conversion and Storage, Optical and Electronic Devices, Interfaces, Nanomaterials, and Hard Matter, 2017, 121(18): 10163-10173.[22] Kuilla T, Bhadra S, Yao Dahu, et al. Recent advances in graphene based polymer composites[J]. Progress in Polymer Science, 2010, 35(11): 1350-1375.[23] Fu Wen, Wang Li, Luo Junlin, et al. Dodecylbenzene-modified graphite oxide via π-π interaction to reinforce EPDM[J]. Journal of Applied Polymer Science, 2019, 136(48): 1–8.[24] Yin Biao, Zhang Xumin, Zhang Xun, et al. Ionic liquid functionalized graphene oxide for enhancement of styrene-butadiene rubber nanocomposites[J]. Polymers for Advanced Technologies, 2017, 28(3): 293-302.[25] Wu Siwu, Zhang Liqun, Weng Peijin, et al. Correlating synergistic reinforcement with chain motion in elastomer/nanocarbon hybrids composites[J]. Soft Matter, 2016, 12: 6893-6901.[26] Yang Heng, Yuan Li, Yao Xuefeng, et al. Monotonic strain sensing behavior of self-assembled carbon nanotubes/graphene silicone rubber composites under cyclic loading[J]. Composites Science and Technology, 2020, 200: 108474.[27] Cao Lan, Tridib Kumarsinha, Tao Lei, et al. Synergistic reinforcement of silanized silica-graphene oxide hybrid in natural rubber for tire-tread fabrication: A latex based facile approach[J]. Composites (Part B): Engineering, 2019, 161: 667-676.[28] Liu Yingjun, Tang Zhenghai, Chen Yi, et al. Programming dynamic imine bond into elastomer/graphene composite toward mechanically strong, malleable, and multi-stimuli responsive vitrimer[J]. Composites Science and Technology, 2018, 168: 214-223.[29] Polgar L M, van Duin M, Broekhuis A A, et al. Use of Diels-Alder chemistry for thermoreversible cross-linking of rubbers: The next step toward recycling of rubber products[J]. Macromolecules, 2015, 48(19): 7096-7105.[30] Qiu Min, Wu Siwu, Tang Zhenghai, et al. Exchangeable interfacial crosslinks towards mechanically robust elastomer/carbon nanotubes vitrimers[J]. Composites Science and Technology, 2018, 165: 24-30.[31] Lei Zhouqiao, Xiang Hongping, Yuan Yongjian, et al. Room-temperature self-healable and remoldable cross-linked polymer based on the dynamic exchange of disulfide bonds[J]. Che-mistry of Materials, 2014, 26(6): 2038-2046.[32] Zheng Ning, Fang Zizheng, Zou Weike, et al. Thermoset shape-memory polyurethane with intrinsic plasticity enabled by transcarbamoylation[J]. Angewandte Chemie International Edition, 2016, 55(38): 11421-11425.[33] Utrera-Barrios S, Hernandez M, Verdejo R, et al. Design of rubber composites with autonomous self-healing capability[J]. ACS Omega, 2020, 5(4): 1902-1910.[34] Hernandez M, Bernal M M, Grande A M, et al. Effect of graphene content on the restoration of mechanical, electrical and thermal functionalities of a self-healing natural rubber[J]. Smart Materials and Structures, 2017, 26: 085010.

备注/Memo

备注/Memo:
更新日期/Last Update: 2022-11-15