[1] Zhang Hao, Xing Wang, Li Hengyi, et al. Fundamental researches on graphene/rubber nanocomposites[J]. Advanced Industrial and Engineering Polymer Research, 2019, 2(1): 32-41.[2] Tang Zhenghai, Zhang Liqun, Feng Wenjiang, et al. Rational design of graphene surface chemistry for high-performance rubber/graphene composites[J]. Macromolecules, 2014, 47(24): 8663-8673.[3] Xue Chen, Gao Hanyang, Hu Yuchen, et al. Hyperelastic characteristics of graphene natural rubber composites and reinforcement and toughening mechanisms at multi-scale[J], Composite Structures, 2019, 228: 111365.[4] Ji Xuqiang, Xu Yuanhong, Zhang Wenling, et al. Review of functionalization structure and properties of graphene/polymer composite fibers[J]. Composites (Part A): Applied Science and Manufacturing, 2016, 87: 29-45.[5] Papageorgiou D G, Kinloch I A, Young R J. Mechanical pro- perties of graphene and graphene-based nanocomposites[J]. Progress in Materials Science, 2017, 90: 75-127.[6] 蒋静, 贾红兵, 王经逸, 等. 石墨烯/聚合物复合材料的研究进展[J]. 合成橡胶工业, 2011, 34(6): 482-488.[7] Istrate O M, Paton K R, Khan U, et al. Reinforcement in melt-processed polymer-graphene composites at extremely low graphene loading level[J]. Carbon, 2014, 78: 243-249.[8] Papageorgiou D G, Kinloch I A, Young R J. Graphene/elastomer nanocomposites[J]. Carbon, 2015, 95: 460-484.[9] Yaragalla S, Meera A P, Kalarikkal N, et al. Chemistry associated with natural rubber-graphene nanocomposites and its effect on physical and structural properties[J]. Industrial Crops and Products, 2015, 74: 792-802.[10] Lian Huiqin, Li Shuxin, Liu Kelong, et al. Study on modified graphene/butyl rubber nanocomposites (I): Preparation and characterization[J]. Polymer Engineering and Science, 2011, 51(11): 2254-2260.[11] Yang Zhijun, Liu Heng, Wu Siwu, et al. A green method for preparing conductive elastomer composites with interconnected graphene network via Pickering emulsion templating[J]. Chemical Engineering Journal, 2018, 342: 112-119.[12] Alexandre M, Dubois P. Polymer-layered silicate nanocompo-sites: Preparation, properties and uses of a new class of mate-rials[J]. Materials Science and Engineering (R): Reports A Review Journal, 2000, 28(1/2): 1-63.[13] Zhang Hao, Liu Jingsheng, Zhang Xuequan, et al. Preparation of ethylene-propylene-rubber/graphene nanocomposites via an in situ polymerization method with supported metallocene catalyst[J]. Journal of Nanoscience and Nanotechnology, 2017, 17(12): 9108-9113.[14] Li Ying, Xu Fan, Lin Zaishan, et al. Electrically and thermally conductive underwater acoustically absorptive graphene/rubber nanocomposites for multifunctional applications[J]. Nanoscale, 2017, 9(38): 14476-14485.[15] Dreyer D R, Park Sungjin, Bielawski C W, et al. The che-mistry of graphene oxide[J]. Chemical Society Reviews, 2010, 39(1): 228-240.[16] Ren Penggang, Yan Dingxiang, Ji Xu, et al. Temperature dependence of graphene oxide reduced by hydrazine hydrate[J]. Nanotechnology, 2011, 22(5): 055705.[17] Zhang Jiali, Yang Haijun, Shen Guangxia, et al. Reduction of graphene oxide via L-ascorbic acid[J]. Chemical Communication, 2010, 46(7): 1112-1114.[18] Shin Hyeon-jin, Kim Kikang, Benayad A, et al. Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance[J]. Advanced Functional Materials, 2009, 19(12): 1987-1992.[19] Zhou Junjun, Wei Laiyun, Wei Haitao, et al. The synthesis of graphene-based antioxidants to promote anti-thermal properties of styrene-butadiene rubber[J]. RSC Advances, 2017, 7(84): 53596-53603.[20] Zhong Bangchao, Jia Zhixin, Dong Huanhuan, et al. One-step approach to reduce and modify graphene oxide via vulcanization accelerator and its application for elastomer reinforcement[J]. Chemical Engineering Journal, 2017, 317: 51-59.[21] Luo Yanlong, Wang Runguo, Wang Wei, et al. Molecular dynamics simulation insight into two-component solubility para-meters of graphene and thermodynamic compatibility of graphene and styrene butadiene rubber[J]. The Journal of Physical Chemistry (C): Energy Conversion and Storage, Optical and Electronic Devices, Interfaces, Nanomaterials, and Hard Matter, 2017, 121(18): 10163-10173.[22] Kuilla T, Bhadra S, Yao Dahu, et al. Recent advances in graphene based polymer composites[J]. Progress in Polymer Science, 2010, 35(11): 1350-1375.[23] Fu Wen, Wang Li, Luo Junlin, et al. Dodecylbenzene-modified graphite oxide via π-π interaction to reinforce EPDM[J]. Journal of Applied Polymer Science, 2019, 136(48): 1–8.[24] Yin Biao, Zhang Xumin, Zhang Xun, et al. Ionic liquid functionalized graphene oxide for enhancement of styrene-butadiene rubber nanocomposites[J]. Polymers for Advanced Technologies, 2017, 28(3): 293-302.[25] Wu Siwu, Zhang Liqun, Weng Peijin, et al. Correlating synergistic reinforcement with chain motion in elastomer/nanocarbon hybrids composites[J]. Soft Matter, 2016, 12: 6893-6901.[26] Yang Heng, Yuan Li, Yao Xuefeng, et al. Monotonic strain sensing behavior of self-assembled carbon nanotubes/graphene silicone rubber composites under cyclic loading[J]. Composites Science and Technology, 2020, 200: 108474.[27] Cao Lan, Tridib Kumarsinha, Tao Lei, et al. Synergistic reinforcement of silanized silica-graphene oxide hybrid in natural rubber for tire-tread fabrication: A latex based facile approach[J]. Composites (Part B): Engineering, 2019, 161: 667-676.[28] Liu Yingjun, Tang Zhenghai, Chen Yi, et al. Programming dynamic imine bond into elastomer/graphene composite toward mechanically strong, malleable, and multi-stimuli responsive vitrimer[J]. Composites Science and Technology, 2018, 168: 214-223.[29] Polgar L M, van Duin M, Broekhuis A A, et al. Use of Diels-Alder chemistry for thermoreversible cross-linking of rubbers: The next step toward recycling of rubber products[J]. Macromolecules, 2015, 48(19): 7096-7105.[30] Qiu Min, Wu Siwu, Tang Zhenghai, et al. Exchangeable interfacial crosslinks towards mechanically robust elastomer/carbon nanotubes vitrimers[J]. Composites Science and Technology, 2018, 165: 24-30.[31] Lei Zhouqiao, Xiang Hongping, Yuan Yongjian, et al. Room-temperature self-healable and remoldable cross-linked polymer based on the dynamic exchange of disulfide bonds[J]. Che-mistry of Materials, 2014, 26(6): 2038-2046.[32] Zheng Ning, Fang Zizheng, Zou Weike, et al. Thermoset shape-memory polyurethane with intrinsic plasticity enabled by transcarbamoylation[J]. Angewandte Chemie International Edition, 2016, 55(38): 11421-11425.[33] Utrera-Barrios S, Hernandez M, Verdejo R, et al. Design of rubber composites with autonomous self-healing capability[J]. ACS Omega, 2020, 5(4): 1902-1910.[34] Hernandez M, Bernal M M, Grande A M, et al. Effect of graphene content on the restoration of mechanical, electrical and thermal functionalities of a self-healing natural rubber[J]. Smart Materials and Structures, 2017, 26: 085010.