|本期目录/Table of Contents|

[1]邹文奖,邹明选,王雨来,等.磷系阻燃剂复配的阻燃丁基胶带的制备与性能[J].合成橡胶工业,2023,6:525-530.
 ZOU Wen-jiang,ZOU Ming-xuan,WANG Yu-lai,et al.Preparation and performance of flame retardant butyl tape compounded with phosphorus-based flame retardant agent[J].China synthetic rubber industy,2023,6:525-530.
点击复制

磷系阻燃剂复配的阻燃丁基胶带的制备与性能(PDF)

《合成橡胶工业》[ISSN:1000-1255/CN:62-1036/TQ]

期数:
2023年6期
页码:
525-530
栏目:
出版日期:
2023-11-15

文章信息/Info

Title:
Preparation and performance of flame retardant butyl tape compounded with phosphorus-based flame retardant agent
文章编号:
1000-1255(2023)06-0525-06
作者:
邹文奖1邹明选2王雨来1吴海涛2陈 烨1徐 静1
1. 东华大学 材料科学与工程学院/纤维材料改性国家重点实验室,上海 201620; 2. 科建高分子材料(上海)股份有限公司,上海 201603
Author(s):
ZOU Wen-jiang1 ZOU Ming-xuan2 WANG Yu-lai1 WU Hai-tao2 CHEN Ye1 XU Jing1
1. School of Materials Science and Engineering/State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China; 2. Kejian Polymer Materials (Shanghai) Co Ltd, Shanghai 201603, China
关键词:
机械共混法三聚氰胺次磷酸盐丁基橡胶丁基胶带预混料氧化锌协效阻燃作用阻燃性能
Keywords:
mechanical blending method melamine hypophosphate butyl rubber butyl tape premix zinc oxide synergistic flame retardant effect flame retardance
分类号:
TQ 333.6
DOI:
DOI:10.19908/j.cnki.ISSN1000-1255.2023.06.0524
文献标识码:
B
摘要:
采用机械共混法将三聚氰胺次磷酸盐(MHS)、氧化锌和丁基胶带预混料(BTP)进行混合,制备了氧化锌/MHS/BTP阻燃复合材料,探究了氧化锌与MHS之间的协效阻燃作用,通过扫描电子显微镜、极限氧指数、锥形量热、热重分析等研究了氧化锌/MHS/BTP复合材料的燃烧性能和热稳定性,通过持黏性和剥离强度研究了氧化锌对氧化锌/MHS/BTP复合材料黏结性能的影响。结果表明,氧化锌的加入可以调节MHS/BTP阻燃体系的成炭过程和发泡过程相匹配并产生完整的气室结构;体系的极限氧指数由28.5%增至33.0%,UL-94垂直燃烧等级由V-1提升到V-0级,MHS/BTP阻燃体系的热释放速率峰值最多可降低66.7%,总释放热降低了22.0%,烟生成速率峰值降低了67.3%,总烟释放量降低了58.5%;MHS/BTP阻燃体系的残炭质量分数由25.58%增至40.41%,最大热分解温度由344.96 ℃升至394.91 ℃;添加氧化锌会导致MHS/BTP阻燃体系的持黏性和剥离强度略有降低。
Abstract:
Zinc oxide/melamine hypophosphate (MHS)/butyl tape premix (BTP) flame-retardant composites were prepared by mixing MHS, zinc oxide and BTP using mechanical blending method and the synergistic flame retardant effect between zinc oxide and MHS was investigated. The combustion performance and thermal stability of zinc oxide/MHS/BTP composites were studied by scanning electron microscope, limited oxygen index, cone calorimetry and thermogravimetric analysis, and the effect of zinc oxide on the adhesive performance of zinc oxide/MHS/BTP composites was studied by persistent adhesion and peel strength test. The results showed that the addition of zinc oxide could adjust the carbon formation and foaming process of the MHS/BTP composite and result in the generation of a complete gas chamber structure. The limited oxygen index of the composite increased from 28.5% to 33.0%, the vertical combustion grade of UL-94 increased from V-1 to V-0, the peak of heat release rate of the MHS/BTP flame-retardant composite could decrease by 66.7% at most, the total heat release decreased by 22.0%, the peak of smoke release rate decreased by 67.3% and the total smoke release decreased by 58.5%. The mass fraction of carbon residue of the MHS/BTP flame retardant composite increased from 25.58% to 40.41% and the maximum thermal decomposition temperature increased from 344.96 °C to 394.91 °C. The addition of zinc oxide would lead to a slight reduction of persistent adhesion and peel strength of the MHS/BTP flame retardant composite.

参考文献/References

[1] 刘羊九, 杨志武, 王艳, 等. 丁基胶带在各行业方面的应用论述[J]. 橡塑资源利用, 2017(2): 24-29.[2] Karaa■a■ B, Murat ■, Veli D, et. Recycling of gamma irradia-ted inner tubes in butyl based rubber compounds[J]. Nuclear Instruments and Methods in Physics Research Section (B): Beam Interactions with Materials and Atoms, 2007, 265(1): 290-293.[3] 唐启恒, 任一萍, 郭文静. 三聚氰胺聚磷酸盐和次磷酸铝协效阻燃高密度纤维板复合材料[J]. 复合材料学报, 2021, 38(1): 84-92.[4] Wang Guojian, Yang Jiayun. Thermal degradation study of fire resistive coating containing melamine polyphosphate and dipentaerythritol[J]. Progress in Organic Coatings, 2011, 72(4): 605-611.[5] Sahar K, Amir B, Alireza G, et al. ZnO nanoparticles as chain elasticity reducer and structural elasticity enhancer: Correlating the degradating role and localization of ZnO with the morphological and mechanical properties of PLA/PP/ZnO nanocompo-site[J]. Polymers for Advanced Technologies, 2019, 30(4): 1083-1095.[6] Jiao C M, Zhuo J L, Chen X L. Synergistic effects of zinc oxide in intumescent flame retardant silicone rubber composites[J]. Plastics, Rubber and Composites, 2013, 42(9): 374-378.[7] Nageswara R T, Naidu T M, Kim M S, et al. Influence of zinc oxide nanoparticles and char forming agent polymer on flame retardancy of intumescent flame retardant coatings[J]. Nanomaterials, 2020, 10(1): 42.[8] Chen Yajun, Wu Xingde, Li Mengqi, et al. Construction of crosslinking network structures by adding ZnO and ADR in intumescent flame retardant PLA composites[J]. Polymers for Advanced Technologies, 2022, 33(1): 198-211.[9] Lim Kien-Sin, Bee Soo-Tueen, Sin Lee Tin, et al. A review of application of ammonium polyphosphate as intumescent flame retardant in thermoplastic composites[J]. Composites (Part B): Engineering, 2016, 84: 155-174.[10] Samanta A K, Bhattacharyya R, Jose S, et al. Fire retardant finish of jute fabric with nano zinc oxide[J]. Cellulose, 2017, 24(2): 1143-1157.[11] Lu Lingang, Guo Nan, Qian Xiaodong, et al. Thermal degradation and combustion behavior of intumescent flame-retardant polypropylene with novel phosphorus-based flame retardants[J]. Journal of Applied Polymer Science, 2018, 135(10): 45962.[12] Chen Yajun, Xu Lifeng, Wu Xingde, et al. The influence of nano ZnO coated by phosphazene/triazine bi-group molecular on the flame retardant property and mechanical property of intumescent flame retardant poly(lactic acid) composites[J]. Thermochimica Acta, 2019, 679: 178336.[13] 杨一涵, 李卓, 李英哲. 橡胶型压敏胶的研究进展[J]. 橡胶工业, 2019, 66(3): 234-239.

备注/Memo

备注/Memo:
科建高分子材料(上海)股份有限公司资助项目(106200061)。
更新日期/Last Update: 2023-11-15