|本期目录/Table of Contents|

[1]杨瑞宁,窦 鹏,王瑞欣,等.苯基硅橡胶分子结构与耐高温性能关系的试验与模拟[J].合成橡胶工业,2022,6:449-455.
 YANG Rui-ning,DOU Peng,WANG Rui-xin,et al.Experiment and simulation of the relationship between molecular structure and high temperature resistance of phenyl silicone rubber[J].China synthetic rubber industy,2022,6:449-455.
点击复制

苯基硅橡胶分子结构与耐高温性能关系的试验与模拟(PDF)

《合成橡胶工业》[ISSN:1000-1255/CN:62-1036/TQ]

期数:
2022年6期
页码:
449-455
栏目:
出版日期:
2022-11-15

文章信息/Info

Title:
Experiment and simulation of the relationship between molecular structure and high temperature resistance of phenyl silicone rubber
文章编号:
1000-1255(2022)06-0449-07
作者:
杨瑞宁窦 鹏王瑞欣徐 婧
中国航空制造技术研究院, 北京 100024
Author(s):
YANG Rui-ning DOU Peng WANG Rui-xin XU Jing
China Institute of Aeronautical Manufacturing Technology, Beijing 100024, China
关键词:
单苯基硅橡胶二苯基硅橡胶分子模拟分子结构耐高温性能力学性能
Keywords:
monophenyl silicone rubber diphenyl silicone rubber molecular simulation molecular structure high temperature resistance mechanical property
分类号:
TQ 333.93
DOI:
DOI:10.19908/j.cnki.ISSN1000-1255.2022.06.0449
文献标识码:
A
摘要:
通过试验与分子模拟相结合的方法研究了单苯基硅橡胶和二苯基硅橡胶分子结构对其耐高温性能的影响。结果表明,在400 ℃高温老化前期,二苯基硅橡胶体系和单苯基硅橡胶体系的硬度、力学性能及耐高温性能差别不明显,而经过10次400 ℃高温循环老化后,二苯基硅橡胶体系力学性能与质量保持率更高,耐高温性能更好。此外,分子模拟结果证实了在675 K下二苯基硅橡胶中苯基链段的Si—O解离能更高,二苯基硅橡胶体系的位阻效应更强,自由体积分数更小,与氧气接触的概率更低,在长期的高温环境中具有更高的热稳定性。
Abstract:
The influence of the molecular structure of monophenyl and diphenyl silicone rubber on the high temperature resistance was studied by combining experiment and molecular simulation. The results showed that hardness, mechanical properties and high temperature resistance of the diphenyl silicone rubber system were not significantly different from those of the monophenyl silicone rubber system at the early aging stage of high temperature of 400 ℃, but after 10 aging cycles of high temperature of 400℃, mechanical properties and mass retention rate of the diphenyl silicone rubber system were higher, and high temperature resistance was better. In addition, the results of molecular simulation confirmed that Si—O of diphenyl silicone rubber has higher dissociation energy at 675 K, and the diphenyl silicone rubber system has stronger steric effect, smaller free volume fraction, lower probability of contact with oxygen, and higher thermal stability in long-term high temperature environment.

参考文献/References

[1] Tiwari A, Nema A K, Das C K, et al. Thermal analysis of polysilo-xanes, aromatic polyimide and their blends[J]. Thermochimica Acta, 2004, 417(1): 133-142.[2] Han Yanming, Zhang Junying, Shi Ling, et al. Improvement of thermal resistance of polydimethylsiloxanes with polymethylmethoxysiloxane as crosslinker[J]. Polymer Degradation and Stability, 2008, 93(1): 242-251.[3] Yao Yiying, Lu Guoquan, Boroyevich D, et al. Effect of Al2O3 fibers on the high-temperature stability of silicone elastomer[J]. Polymer, 2014, 55(16): 4232-4240.[4] Zhao Xiongwei, Zang Chongguang, Sun Yalun, et al. Borosilo-xane oligomers for improving adhesion of addition-curable liquid silicone rubber with epoxy resin by surface treatment[J]. Journal of Materials Science, 2018, 53(2): 1167-1177.[5] 武卫莉. 硅橡胶的耐热性能研究[J]. 合成橡胶工业, 2002, 25(2): 85-87.[6] Hyde E D E R, Seyfaee A, Neville F, et al. Colloidal silica particle synthesis and future industrial manufacturing pathways: A review[J]. Industrial & Engineering Chemistry Research, 2016, 55(33): 8891-8913.[7] Mansouri J, Burford R P, Cheng Y B, et al. Formation of strong ceramified ash from silicone-based compositions[J]. Journal of Materials Science, 2005, 40(21): 5741-5749.[8] Shi Yunhui, Gao Xiaoxiao, Zhang Dian, et al. Synthesis and thermal properties of modified room-temperature vulcanized (RTV) silicone rubber using polyhedral oligomeric silsesquioxane (POSS) as acrosslinking agent[J]. RSC Advance, 2014, 4(78): 41453-41460.[9] 石扬, 黄艳华, 薛磊, 等. 甲基苯基硅橡胶的高低温性能研究[J]. 有机硅材料, 2016, 30(2): 93-96.[10] 苏正涛, 秦瑞祥, 朱华, 等. 苯基硅橡胶的热空气老化性能研究[J]. 有机硅材料, 2012, 26(4): 248-250.[11] Fredrickson G H, Liu A J, Bates F S. Entropic corrections to the flory-huggins theory of polymer blends-architectural and conformational effects[J]. Macromolecules, 1994, 27(9): 2503-2511.[12] Jabeen H, Saleemi S, Razzaq H, et al. Investigating the sca-venging of reactive oxygen species by antioxidants via theoretical and experimental methods[J]. Journal of Photochemistry and Photobiology (B): Biology, 2018, 180: 268-275.[13] Zheng Wei, Wu Youping, Yang Wei, et al. A combined experimental and molecular simulation study of factors influen-cing the selection of antioxidants in butadiene rubber[J]. Journal of Physical Chemistry (B): Biophysics, 2017, 121(6): 1413-1425.[14] 张乃强, 董建, 刘宗林. 聚苯乙烯增强的室温硫化硅橡胶的制备及表征[J]. 合成橡胶工业, 2012, 35(2):120-123.[15] Bondi A. Free volumes and free rotation in simple liquids and liquid saturated hydrocarbons[J]. The Journal of Physical Chemistry, 1954, 58(11): 929-939.

备注/Memo

备注/Memo:
航空工业集团专项基金资助项目(KZ 521904)。
更新日期/Last Update: 2022-11-15