|本期目录/Table of Contents|

[1]鲁道鲲,张崇印,王仕峰.芳纶纤维增强橡胶复合材料的界面改性研究进展[J].合成橡胶工业,2025,1:73-78.
 LU Dao-kun,ZHANG Chong-yin,WANG Shi-feng.Progress in interfacial modification of aramid fiber reinforced rubber composite[J].China synthetic rubber industy,2025,1:73-78.
点击复制

芳纶纤维增强橡胶复合材料的界面改性研究进展(PDF)

《合成橡胶工业》[ISSN:1000-1255/CN:62-1036/TQ]

期数:
2025年1
页码:
73-78
栏目:
出版日期:
2025-02-15

文章信息/Info

Title:
Progress in interfacial modification of aramid fiber reinforced rubber composite
文章编号:
1000-1255(2025)01-0073-06
作者:
鲁道鲲1张崇印2王仕峰1
1. 上海交通大学 化学化工学院,上海 200240; 2. 上海航天特种环境高分子功能材料工程技术研究中心,上海 200245
Author(s):
LU Dao-kun1 ZHANG Chong-yin2 WANG Shi-feng1
1. School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; 2. Shanghai Engineering Research Center of Specialized Polymer Materials for Aerospace, Shanghai 200245, China
关键词:
芳纶纤维橡胶复合材料增强界面黏合综述
Keywords:
aramid fiber rubber composite reinforcement interface adhesion review
分类号:
TQ 330.1+5
DOI:
DOI:10.19908/j.cnki.ISSN1000-1255.2025.01.0073
文献标识码:
A
摘要:
芳纶纤维增强橡胶复合材料具有质轻、高强、耐高温、耐磨损及耐化学侵蚀等优点,应用前景广阔,但是芳纶纤维与橡胶基体间的弱界面黏合限制了其应用场景。在回顾芳纶纤维与橡胶基体黏合发展及现状的基础上,综述了提高界面黏合性的物理化学方法,评述了不同方法的特点及不足。最后,介绍了芳纶纤维增强橡胶复合材料的应用情况,并展望了其发展前景。
Abstract:
Aramid fiber reinforced rubber composites had the potential and wide application because of light weight, high strength, high temperature resistance, wear resistance and chemical erosion resistance. However, the weak interfacial adhesion between aramid fiber and rubber matrix limited its application. Based on the development and current status of the adhesion between aramid fiber and rubber matrix, the physical-chemical methods for improving the interfacial adhesion were reviewed, and the characteristics and shortcomings of different methods were discussed. Finally, the applications of aramid fiber reinforced rubber composites were introduced, and its development prospects were envisioned.

参考文献/References

[1] WANG L, SHI Y X,CHEN S X, et al. Highly efficient mussel-like inspired modification of aramid fibers by UV-accelerated catechol/polyamine deposition followed chemical grafting for high-performance polymer composites[J]. Chemical Engineering Journal, 2017, 314: 583-593.[2] 朱大勇, 辜婷, 鲁圣军, 等. 芳纶纤维的表面改性及其在橡胶制品中的应用研究[J]. 化工新型材料, 2017, 45(8): 21-23.[3] ZHANG B, JIA L H, TIAN M, et al. Surface and interface modification of aramid fiber and its reinforcement for polymer composites: A review[J]. European Polymer Journal, 2021, 147: 110352.[4] GARCIA J M, GARCIA F C, SERNA F, et al. High-performance aromatic polyamides[J]. Progress in Polymer Science, 2010,35(5): 623-686.[5] LU Z Q, NING D D, DANG W B, et al. Comparative study on the mechanical and dielectric properties of aramid fibrid, mica and nanofibrillated cellulose based binary composites[J]. Cellulose, 2020,27: 8027-8037.[6] 邢凯歌. 芳纶复合材料在体育运动器材中的应用研究[J]. 合成纤维, 2021, 50(9): 45-47.[7] DHARMAVARAPU P, REDDY M B S S. Aramid fiber as potential reinforcement for polymer matrix composites: A review[J]. Emergent Materials, 2022, 5: 1561-1578.[8] MEMON A A, PEERZADA M H, SAHITO I A, et al. Facile fabrication and comparative exploration of high cut resistant woven and knitted composite fabrics using Kevlar and polyethylene[J]. Fashion and Textiles, 2018, 5: 11.[9] NAYAK N, BANERJEE A, SIVARAMAN P. Ballistic impact response of ceramic-faced aramid laminated composites against 7.62 mm armour piercing projectiles[J]. Defence Science Journal, 2013, 63(4): 369-375.[10] CHEN Q H, TING L H, GAO Y J, et al. Mechanical properties in glass fiber PVC-foam sandwich structures from different chopped fiber interfacial reinforcement through vacuum-assis ted resin transfer molding(VARTM) processing[J]. Composites Science and Technology, 2017, 144: 202-207.[11] GAO H T, LIU X H, CHEN J Q, et al. Preparation of glass-ceramics with low density and high strength using blast furnace slag, glass fiber and waterglass[J]. Ceramics International, 2018, 44(6): 6044-6053.[12] YU J L, CHEN H D, HUANG H C, et al. Protein-induced decoration of applying MXene directly to UHMWPE fibers and fabrics for improved adhesion properties and electronic textiles[J]. Composites Science and Technology, 2022, 218: 109158.[13] OZKAN D, GOK S M, KARAOLANLI A C, et al. Carbon fiber reinforced polymer (CFRP) composite materials, their characteristic properties, industrial application areas and their machinability[J]. Engineering Design Applications(Ⅲ), 2020: 235-253.[14] 吴宜峰, 张琰, 李爱群, 等. 尼龙织物叠层橡胶支座压缩与压剪性能试验研究[J]. 振动与冲击, 2022, 41(18): 150-156.[15] 袁玥, 李鹏飞, 凌新龙. 芳纶纤维的研究现状与进展[J]. 纺织科学与工程学报, 2019, 36(1): 146-152.[16] JANCA J, STAHEL P, KRCMA F, et al. Plasma surface treatment of textile fibres for improvement of car tires[J]. Czechoslovak Journal of Physics, 2000, 50: 449-452.[17] LUO S. Surface modification of textile fibers and cords by plasma polymerization for improvement of adhesion to polymeric matrices[M]. 2002.[18] 彭程程, 魏取福, 朱亚楠, 等. 低温氧等离子体处理对芳纶纤维与橡胶粘附性能的影响[J]. 化工新型材料, 2011, 39(5): 98-100.[19] LANGE P J, AKKER P G, MAAS A, et al. Adhesion activation of Twaron aramid fibres studied with low-energy ion scattering and x-ray photoelectron spectroscopy[J]. Surface and Interface Analysis, 2001, 31(12): 1079-1084.[20] BISWAS K, SHAYED M, HUND R D, et al. Surface modification of Twaron aramid fiber by the atmospheric air plasma technique[J]. Textile Research Journal, 2012, 83(4): 406-417.[21] XU T, QI Z, YIN Q, et al. Effects of air plasma modification on aramid fiber surface and its composite interface and mechanical properties[J]. Polymers, 2022, 14(22): 4892.[22] SA R N, YAN Y, WANG L, et al. Improved adhesion properties of poly-p-phenyleneterephthamide fibers with a rubber matrix via UV-initiated grafting modification[J]. RSC Advances, 2015, 5(114): 94351-94360.[23] 王倩, 熊玉竹, 戴骏, 等. 芳纶纤维的紫外辐照改性及硅烷偶联剂二次改性[J]. 高分子材料科学与工程, 2018, 34(7): 78-83.[24] 杨诗润, 罗筑, 吴晓宇, 等. 动态固化环氧树脂对芳纶/天然橡胶复合材料界面的改性[J]. 高分子材料科学与工程, 2013, 29(12): 77-81.[25] 陈维龙, 罗筑, 金仲, 等. 改性环氧树脂对芳纶纤维增强天然橡胶性能的影响[J]. 化工新型材料, 2016, 44(9): 113-115.[26] GONG X Y, LIU Y Y, HUANG M, et al. Dopamine-modified aramid fibers reinforced epoxidized natural rubber nanocomposites[J]. Composites Communications, 2022, 29: 100996.[27] 李鹏, 罗筑, 钟金成, 等. 芳纶短纤维的改性浸胶预处理对填充的三元乙丙橡胶材料性能的影响[J]. 高分子材料科学与工程, 2019, 35(4): 40-46.[28] 罗林宗, 熊玉竹, 吴胜学. 芳纶纤维表面钠离子化及接枝改性研究[J]. 化工新型材料, 2021, 49(10): 119-123.[29] TAKAYANAGI M, UETA S, LEI W. A new chemical method of surface-treatment of Kevlar fiber for composites with epoxy resin[J]. Polymer Journal, 1987, 19: 467-474.[30] 周俊, 何永祝. 芳纶纤维的活化浸渍处理对EPDM绝热层力学性能的影响[J]. 化学与粘合, 2016, 38(3): 157-179.[31] LIN J S. Effect of surface modification by bromination and me talation on Kev lar fibre-epoxy adhesion[J]. European Polymer Journal, 2002, 38(1): 79-86.[32] 张清坡, 熊玉竹, 戴骏, 等. 改性芳纶纤维接枝氧化石墨烯的研究[J]. 人工晶体学报, 2018, 47(9): 1966-1971.[33] WANG L, ZHANG B, LI X, et al. Enhanced adhesion property of aramid fibers by polyphenol-metal iron complexation and silane grafting[J]. The Journal of Adhesion, 2019, 94(4): 1-15.[34] 刘龙, 梁森, 王得盼, 等. 硅烷偶联剂及氧化石墨烯二次改性对芳纶纤维界面性能的影响[J]. 材料工程, 2022, 50(1): 145-153.[35] 翟振强, 李英哲, 黄伟, 等. 芳纶纳米纤维强化浸渍处理芳纶纤维及其橡胶复合材料的界面黏合性能[J]. 复合材料学报, 2022, 39(9): 4327-4336.[36] ZHANG B, LIAN T Z, SHAO X M, et al. Surface coating of aramid fiber by a graphene/aramid nanofiber hybrid material to enhance interfacial adhesion with rubber matrix[J]. Industrial and Engineering Chemistry Research, 2021, 60(6): 2472-2480.[37] YIN L P, ZHOU Z T, LUO Z, et al. Reinforcing effect of aramid fibers on fatigue behavior of SBR/aramid fiber compo-sites[J]. Polymer Testing, 2019, 80: 106092.[38] 陈荣超. 芳纶材料在轮胎胎圈上的应用与制造技术[J]. 轮胎工业, 2012, 32(7): 423-426.[39] KNIJNENBERA A, BOS J, DINGEMANS T J, et al. The synthesis and characterisation of reactive poly(p-phenylene terephthalamide)s: A route towards compression stable aramid fibres[J]. Polymer, 2010, 51(9): 1887-1897.[40] NILAKANTAN G, GILLESPIE J. Yarn pull-out behavior of plain woven Kevlar fabrics effect of yarn sizing, pullout rate, and fabric pre-tension[J]. Composites Structures, 2013, 101: 215-224.[41] YANG X, TU Q Z, SHEN X M, et al. A novel method for deposition of multi-walled carbon nanotubes onto poly(p-phenylene terephthalamide) fibers to enhance interfacial adhesion with rubber matrix[J]. Polymers (Basel), 2019, 11(2): 374.[42] 崔健. 芳纶纤维在胶管胶布制品中的应用[J]. 特种橡胶制品, 2006, 27(6): 32-34.[43] GAO J H, YANG X X, HUANG L H. Numerical prediction of mechanical properties of rubber composites reinforced by aramid fiber under large deformation[J]. Composite Structures, 2018, 201: 29-37.[44] JIN H, WANG Y Y. Synthesis and characterization of the novel meta-modified aramid fibers with liquid crystalline properties[J]. Polymer Composites, 2012, 33(9): 1620-1627.[45] 庄士平. 对位芳纶纤维在切边V带中的应用[J]. 青岛科技大学学报(自然科学版), 2017, 38(S 2): 102-104.

备注/Memo

备注/Memo:
国家重点研发计划项目(2021 YFE 0105200)。
更新日期/Last Update: 1900-01-01