|本期目录/Table of Contents|

[1]王景元 a,韩 璐,赵洪国?鄢,等.硅烷偶联剂/月桂酸复合改性白炭黑对溶聚丁苯橡胶复合材料性能的影响[J].合成橡胶工业,2024,3:257-261.
 WANG Jing-yuan a,HAN Lu,ZHAO Hong-guo,et al.Effect of silica co-modified by silane coupling agent/lauric acid on properties of solution-polymerized styrene-butadiene rubber composites[J].China synthetic rubber industy,2024,3:257-261.
点击复制

硅烷偶联剂/月桂酸复合改性白炭黑对溶聚丁苯橡胶复合材料性能的影响(PDF)

《合成橡胶工业》[ISSN:1000-1255/CN:62-1036/TQ]

期数:
2024年3期
页码:
257-261
栏目:
出版日期:
2024-05-15

文章信息/Info

Title:
Effect of silica co-modified by silane coupling agent/lauric acid on properties of solution-polymerized styrene-butadiene rubber composites
文章编号:
1000-1255(2024)03-0257-05
作者:
王景元1 a韩 璐2赵洪国3?鄢李锦山1 b肖海成1 a
(1. 中国石油石油化工研究院 a. 化工研究所, b. 新材料研究所,北京 102206; 2. 中国石化燕山石化公司 合成树脂厂,北京 102500; 3. 中国石油石油化工研究院 兰州化工研究中心,兰州 730060)
Author(s):
WANG Jing-yuan1 a HAN Lu2 ZHAO Hong-guo3 LI Jin-shan1 b XIAO Hai-cheng1 a
(1. a. Basic Petrochemicals Research Division, b. Advanced Materials Research Division, Petrochemical Research Institute, PetroChina, Beijing 102206, China; 2. Synthetic Resin Factory, Yanshan Petrochemical Company, SINOPEC, Beijing 102500, China; 3. Lanzhou Petrochemical Research Center, Petrochemical Research Institute, PetroChina, Lanzhou 730060, China)
关键词:
硅烷偶联剂月桂酸白炭黑复合改性溶聚丁苯橡胶力学性能
Keywords:
silane coupling agent lauric acid silica co-modification solution-polymerized styrene-butadiene rubber mechanical property
分类号:
TQ 333.1
DOI:
DOI:10.19908/j.cnki.ISSN1000-1255.2024.03.0257
文献标识码:
B
摘要:
使用硅烷偶联剂γ-氨丙基三乙氧硅烷(APTES)和月桂酸(LA)对白炭黑进行了复合改性,制备了复合改性白炭黑/溶聚丁苯橡胶(SSBR)复合材料,研究了APTES和LA复合改性白炭黑对复合材料硫化特性、力学性能、抗湿滑性能和滚动阻力的影响。结果表明,经复合改性后,白炭黑在30~200 ℃之间的失重降低54%,团聚现象明显改善;复合改性白炭黑/SSBR复合材料的工艺正硫化时间为20.45 min,拉伸强度达到18.8 MPa,0 ℃和60 ℃的损耗因子分别为0.678 8和0.100 3。
Abstract:
Silica was co-modified by silane coupling agent γ-aminopropyl triethoxysilane (APTES) and lauric acid (LA), the co-modified silica/solution-polymerized styrene-butadiene rubber (SSBR) composite was prepared, and the effects of co-modified silica by APTES and LA on curing characteristics, mechanical properties, wet skid resistance, and rolling resistance of SSBR composites were studied. The results showed that the mass loss of silica between 30 ℃ and 200 ℃ decreased by 54%, and the agglomeration was significantly improved after the co-modification. The optimum curing time of co-modified silica/SSBR composite was 20.45 min, tensile strength reached 18.8 MPa, and loss factors at 0 ℃ and 60 ℃ were 0.678 8 and 0.100 3, respectively.

参考文献/References

[1] 蒋鹏程, 陈福林, 曹有名, 等. 绿色轮胎胎面胶配方研究进展[J]. 合成橡胶工业, 2009, 32(4): 332-338.[2] 梁爱民. 绿色轮胎用溶聚丁苯橡胶/白炭黑复合体系的研究技术进展[J]. 轮胎工业, 2016, 36(5): 267-272.[3] Sun Chongzhi, Wen Shipeng, Ma Hongwei, et al. Improvement of silica dispersion in solution polymerized styrene-butadiene rubber via introducing amino functional groups[J]. Industrial & Engineering Chemistry Research, 2018, 58(3): 1454-1461.[4] Liu Xiao, Zhao Suhe. Study on structure and properties of SSBR/SiO2 co-coagulated rubber and SSBR filled with nanosi-lica composites[J]. Journal of Applied Polymer Science, 2010, 109(6): 3900-3907.[5] Gao Wei, Lu Jianmin, Song Wenna, et al. Solution mechano-chemical approach for preparing high-dispersion SiO2-g-SSBR and the performance of modified silica/SSBR composites[J]. Industrial & Engineering Chemistry Research, 2019, 58(17): 7146-7155.[6] Ryu Changseok, Yang Jae-Kyoung, Park Wonhyeong, et al. Reinforcement of styrene-butadiene/polybutadiene rubber compounds by modified silicas with different surface and networked states[J]. Journal of Applied Polymer Science, 2017, 134(22): 44893.[7] 周晓张, 田晓慧, 孙金煜, 等. 改性氨基硅溶胶/天然乳胶膜材料的制备、结构及性能[J]. 合成橡胶工业, 2015, 38(2): 132-135.[8] Wu Weili, Cong Songyan. Silica and diatomite fillers modified fluorine rubber composites treated by silane-coupling agents[J]. Journal of Vinyl and Additive Technology, 2020, 21(6): 55-61.[9] Dong Fuying, Ma Depeng, Feng Shengyu, et al. Aminopropyl-modified silica as cross-linkers of polysiloxane containing gamma-chloropropyl groups for preparing heat-curable silicone rubber[J]. Polymer Testing, 2016, 52: 124-132.[10] Chen Wenyong, Qiao Hongbin, Zhang Dawei, et al. Silane coupling agent γ-aminopropyltriethoxysilane-modified nanoparticles/polyurethane elastomer nanocomposites[J]. Iranian Polymer Journal, 2023, 32(6): 715-727.[11] 赵志明, 李文琼, 靳朝辉, 等. 硅烷偶联剂KH 550改性白炭黑及其在环氧树脂中的应用[J]. 合成材料老化与应用, 2023, 52(4): 15-18.[12] 秦红梅. 石墨烯/白炭黑/天然橡胶复合材料的制备与性能[D]. 贵阳: 贵州大学, 2020.[13] Li Xiaohong, Cao Zhi, Zhang Zhijun, et al. Surface-modification in situ of nano-SiO2 and its structure and tribological pro-perties[J]. Applied Surface Science, 2006, 252(22): 7856-7861.[14] Singh A K, Mukhopadhyay M. Immobilization of lipase on carboxylic acid-modified silica nanoparticles for olive oil glycero-lysis[J]. Bioprocess and Biosystems Engineering, 2018, 41(1): 115-127.[15] Dugas V, Chevalier Y. Surface hydroxylation and silane graf-ting on fumed and thermal silica[J]. Journal of Colloid and Interface Science, 2003, 264: 354-361.

备注/Memo

备注/Memo:
中国石油炼油与化工分公司科研项目(20-LH-19-01)。
更新日期/Last Update: 1900-01-01