|本期目录/Table of Contents|

[1]韩 菊,郝福兰?鄢,赵春财,等.不同硫化体系对生物基衣康酸酯橡胶性能的影响[J].合成橡胶工业,2024,3:240-246.
 HAN Ju,HAO Fu-lan,ZHAO Chun-cai,et al.Effects of different vulcanization systems on properties of bio-based poly(di-n-butyl itaconate-co-butadiene) rubber[J].China synthetic rubber industy,2024,3:240-246.
点击复制

不同硫化体系对生物基衣康酸酯橡胶性能的影响(PDF)

《合成橡胶工业》[ISSN:1000-1255/CN:62-1036/TQ]

期数:
2024年3期
页码:
240-246
栏目:
出版日期:
2024-05-15

文章信息/Info

Title:
Effects of different vulcanization systems on properties of bio-based poly(di-n-butyl itaconate-co-butadiene) rubber
文章编号:
1000-1255(2024)03-0240-07
作者:
韩 菊12郝福兰12?鄢赵春财12牛淳良12郑红兵12
(1. 山东省烯烃催化与聚合重点实验室,山东 青岛 266000; 2. 山东京博中聚新材料有限公司,山东 滨州 256500)
Author(s):
HAN Ju12 HAO Fu-lan12 ZHAO Chun-cai12 NIU Chun-liang12 ZHENG Hong-bing12
(1. Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Qingdao 266000, China; 2. Shandong Chambroad Sinopoly New Material Co Ltd, Binzhou 256500, China)
关键词:
衣康酸酯橡胶硫化体系硫化特性物理机械性能耐热氧老化性能动态力学性能
Keywords:
poly(di-n-butyl itaconate-co-buta-diene) rubber vulcanization system curing characte-ristics physical and mechanical property thermal-oxydative aging property dynamic mechanical pro-perty
分类号:
TQ 333.99
DOI:
DOI:10.19908/j.cnki.ISSN1000-1255.2024.03.0240
文献标识码:
B
摘要:
研究了传统硫化(CV)体系、半有效硫化(SEV)体系、有效硫化(EV)体系、过氧化物双叔丁基过氧异丙基苯(BIBP)/三烯丙基异氰脲酸酯(TAIC)硫化体系和酚醛树脂SP 1045硫化体系对生物基衣康酸酯橡胶性能的影响。结果表明,BIBP/TAIC硫化体系硫化速率最快,而SP 1045硫化体系硫化速率最慢,CV体系、SEV体系和EV体系硫化速率依次逐渐加快;硫黄硫化体系硫化胶的交联密度由大到小依次为:CV体系、SEV体系和EV体系;硫化胶拉伸强度由大到小依次为:SEV体系、SP 1045硫化体系、CV体系、EV体系和BIBP/TAIC硫化体系,其中EV体系硫化胶的扯断伸长率和撕裂强度最大,CV体系硫化胶的耐磨性能最好;BIBP/TAIC硫化体系硫化胶具有最优的耐热氧老化性能;与硫黄硫化体系相比,BIBP/TAIC和SP 1045硫化体系硫化胶玻璃化转变温度明显向高温方向偏移;CV体系硫化胶60 ℃时的损耗因子和滚动阻力均为最小;EV体系硫化胶的的有效阻尼温域最宽。
Abstract:
The effects of conventional vulcanization (CV) system, semi-effective vulcanization (SEV) system, effective vulcanization (EV) system, peroxide 1,3-bis(tert-butylperoxyisopropyl) benzene (BIBP)/triallyl isocyanurate (TAIC) vulcanization system, and phenolic resin SP 1045 vulcanization system on properties of poly(di-n-butyl itaconate-co-butadiene) rubber were studied. The results showed that the vulcanization rate of BIBP/TAIC vulcanization system was the fastest, while the vulcanization rate of SP 1045 vulcanization system was the slowest, and the vulcanization rate of CV system, SEV system, and EV system increased gradually in sequence. The crosslinking densities of the vulcanizates of the sulfur vulcanization systems in descending order were CV system, SEV system and EV system. Tensile strength of all the vulcanizates in descending order were SEV system, SP 1045 vulcanization system, CV system, EV system and BIBP/TAIC vulcanization system, in which elongation at break and tear strength of the vulcanizate of EV system were the largest, and the wear resistance of the vulcanizate of CV system was the best. The vulcanizate of BIBP/TAIC vulcanization system had the best thermal-oxydative aging property. Compared with the sulfur vulcanization systems, the glass transition temperatures of the vulcanizates of BIBP/TAIC and SP 1045 vulcanization systems shifted significantly towards to the high-temperature direction. The loss factor at 60 ℃ and rolling resistance of the vulcanizate of CV system were both the smallest. The effective damping temperature range of the vulcanizate of EV system was the widest.

参考文献/References

[1] 杨琳, 莫业勇. 2021年中国天然橡胶进出口情况分析[J]. 世界热带农业信息, 2022(7): 74-76.[2] 吉海军. 轮胎用新型生物基衣康酸酯弹性体设计、合成及性能调控[D]. 北京: 北京化工大学, 2020.[3] Lei Weiwei, Zhou Xinxin, Russell T P, et al. High performance bio-based elastomers: Energy efficient and sustainable materials for tires[J]. Journal of Materials Chemistry (A): Materials for Energy and Sustainability, 2016, 4(34): 13058-13062.[4] Zhou Xinxin, Wang Runguo, Lei Weiwei, et al. Design and synthesis by redox polymerization of a bio-based carboxylic elastomer for green tire[J]. Science China Chemistry, 2015, 58(10): 1561-1569.[5] Lei Weiwei, Qiao He, Zhou Xinxin, et al. Synthesis and eva-luation of bio-based elastomer based on diethyl itaconate for oil-resistance applications[J]. Science China Chemistry, 2016, 59(11): 1376-1383.[6] 郑龙, 姜健, 张立群, 等. 不同硫化体系对天然橡胶动静态性能的影响[J]. 橡胶工业, 2018, 65(4): 421-425.[7] Dluzneski P R. Peroxide vulcanization of elastomers[J]. Rubber Chemistry and Technology, 2001, 74(3): 451-492.[8] 丁莹. 硫化体系对EPDM橡胶交联网络及其动态力学性能的影响[D]. 青岛: 青岛科技大学, 2014.[9] 张文洁, 王凯凯, 郝福兰, 等. 不同硫化体系对反式丁戊橡胶性能的影响[J]. 合成橡胶工业, 2021, 44(3): 201-206.[10] 李颀, 赵素合, 朱伶俐, 等. ZDMA/白炭黑填充HNBR的结构与性能[J]. 橡胶工业, 2010, 57(2): 69-74.[11] Flory P J, Rehner J. Statistical mechanics of cross-linked polymer networks (Ⅱ): Swelling[J]. The Journal of Chemical Physics, 1943, 11(11): 521-526.[12] 蔡磊, 宗鑫, 张新萍, 等. 硫化时间对绿色轮胎胎面胶交联网络结构与性能的影响[J]. 橡胶工业, 2021, 68(2): 119-126.[13] 李新. 溴化丁基橡胶硫化体系及其配合性能的研究[D]. 青岛: 青岛科技大学, 2013.[14] 马文石, 吴冬生, 邓卫星, 等. 酚醛树脂对BIIR胶料硫化特性的影响[J]. 橡胶工业, 2005, 52(3): 154-156.[15] 王勇, 周琦, 高新文, 等. 硫化体系对NBR胶料性能的影响[J]. 橡胶工业, 2008, 55(1): 28-30.[16] Dikland H G, Hulskotte R J M,van der Does L, etd. The mechanism of EPDM peroxide vulcanisations in the presence of triallylcyanurate as a coagent[J]. Kautschuk und Gummi Kunststoffe, 1993, 46(8): 608-613.[17] 杨桢, 熊玉竹. 橡胶材料耐磨性能研究进展[J]. 高分子通报, 2020, (9): 15-28.[18] 巩丽, 游海军, 刘俐, 等. 硫化体系对天然橡胶耐磨性的影响及磨耗机理的研究[J]. 橡塑技术与装备(橡胶), 2015, 41(17): 9-13.[19] 周省委. 橡胶材料磨耗特性研究[D]. 青岛: 青岛科技大学, 2020.[20] 徐瑾. 橡胶复合材料磨耗的实验及机理研究[D]. 青岛: 青岛科技大学, 2012.[21] 郝敏, 苏正涛, 裴高林, 等. 不同硫化体系对氯化丁基橡胶性能的影响[J]. 合成橡胶工业, 2017, 40(3): 231-234.[22] 康少娜. 宽温域阻尼橡胶的制备及性能研究[D]. 青岛: 青岛科技大学, 2021.[23] 王建功, 任慧, 逯祥洲, 等. 硫化体系对NR/NBR阻尼材料性能的影响[J]. 世界橡胶工业, 2017, 44(12): 121-125.[24] 胡洋. 苯基硅橡胶泡沫材料的制备及阻尼性能研究[D]. 绵阳: 西南科技大学, 2019.[25] 巩丽, 王海涛, 董成磊, 等. 不同硫化体系天然橡胶胶料的动态性能研究[J]. 橡胶工业, 2017, 64(1): 22-25.

备注/Memo

备注/Memo:
更新日期/Last Update: 1900-01-01