|本期目录/Table of Contents|

[1]崔刘富,田晓慧?鄢,元以中,等.生物基环氧化天然橡胶形状记忆复合材料的制备与性能[J].合成橡胶工业,2024,3:233-239.
 CUI Liu-fu,TIAN Xiao-hui,YUAN Yi-zhong,et al.Preparation and properties of bio-based epoxidized natural rubber shape memory composites[J].China synthetic rubber industy,2024,3:233-239.
点击复制

生物基环氧化天然橡胶形状记忆复合材料的制备与性能(PDF)

《合成橡胶工业》[ISSN:1000-1255/CN:62-1036/TQ]

期数:
2024年3期
页码:
233-239
栏目:
出版日期:
2024-05-15

文章信息/Info

Title:
Preparation and properties of bio-based epoxidized natural rubber shape memory composites
文章编号:
1000-1255(2024)03-0233-07
作者:
崔刘富田晓慧?鄢元以中孙金煜
(华东理工大学 材料科学与工程学院,上海 200237)
Author(s):
CUI Liu-fu TIAN Xiao-hui YUAN Yi-zhong SUN Jin-yu
(School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China)
关键词:
壳聚糖环氧化天然橡胶生物基复合材料形状记忆性能力学性能微观结构结晶性
Keywords:
chitosan epoxidized natural rubber bio-based composite shape memory performance mechanical property microstructure crystallinity
分类号:
TQ 332.5
DOI:
DOI:10.19908/j.cnki.ISSN1000-1255.2024.03.0233
文献标识码:
A
摘要:
以壳聚糖作为填料、脱蛋白环氧化天然橡胶(ENR)作为基质材料,制备了生物基形状记忆复合材料,通过傅里叶变换红外光谱、原子力显微镜、电子万能试验机等研究了该形状记忆复合材料的微观结构、力学性能及形状记忆性能。结果表明,加入壳聚糖后ENR的有序结晶相以更小、更均匀的尺寸分散在整个体系中;由于壳聚糖的增强增韧作用,该形状记忆复合材料的耐磨性能增强、力学性能逐渐提高。此外,壳聚糖的加入进一步提高了ENR的形状记忆性能。
Abstract:
A bio-based shape memory composite was prepared with chitosan as filler and deproteinized epoxidized natural rubber (ENR) as matrix, and the microstructure, mechanical properties, and shape memory performance of the shape memory composite materials were investigated by Fourier transform infrared spectroscopy, atomic force microscope, electronic universal testing machine, etc. The results showed that the addition of chitosan dispersed the ordered crystalline phases of ENR into smaller and more uniformly sized particles throughout the system. Due to the strengthening and toughening effect of chitosan, the abrasion resistance of the shape memory composite material was enhanced and its mechanical properties improved gradually. Furthermore, the addition of chitosan further improved the shape memory performance of ENR.

参考文献/References

[1] Rafiee M M, Baniassadi M, Wang Kui, et al. Mechanical properties improvement of shape memory polymers by desig-ning the microstructure of multi-phase heterogeneous materials[J]. Computational Materials Science, 2021, 196: 110523.[2] Rao K V, Ananthapadmanabha G S, Dayananda G N. Effect of cross-linking density on creep and recovery behavior in epoxy-based shape memory polymers (SMEPs) for structural applications[J]. Journal of Materials Engineering and Performance, 2016, 25(12): 5314-5322.[3] Zirdehi E M, Dumlu H, Varnik F, et al. On the size effect of additives in amorphous shape memory polymers[J]. Materials, 2021, 14(2): 327.[4] Maimaitiming A, Zhang Maojiang, Tan Hairong, et al. High-strength triple shape memory elastomers from radiation-vulca-nized polyolefin elastomer/polypropylene blends[J]. ACS Applied Polymer Materials, 2019, 1(7): 1735-1748.[5] Lan Xin, Liu Yanju, Lv Haibao, et al. Fiber reinforced shape-memory polymer composite and its application in a deployable hinge[J]. Smart Materials and Structures, 2009, 18(2): 024002.[6] Senatov F S, Niaza K V, Zadorozhnyy M Y, et al. Mechanical properties and shape memory effect of 3 D-printed PLA-based porous scaffolds[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 57: 139-148.[7] Gu Shuying, Chang Kun, Jin Shengpeng. A dual-induced self-expandable stent based on biodegradable shape memory polyurethane nanocomposites (PCLAU/Fe3O4) triggered around body temperature[J]. Journal of Applied Polymer Science, 2018, 135(3): 45686-45693.[8] Bac N V, Huu C C. Synthesis and application of epoxidized natural rubber[J]. Journal of Macromolecular Science (Part A): Pure and Applied Chemistry, 1996, 33(12): 1949-1955.[9] Sahariah P, Masson M. Antimicrobial chitosan and chitosan derivatives: A review of the structure-activity relationship[J]. Biomacromolecules, 2017, 18(11): 3846-3868.

备注/Memo

备注/Memo:
更新日期/Last Update: 1900-01-01