|本期目录/Table of Contents|

[1]王玉如,任 鹤,倪双阳,等.丁烯基弹性体的制备与性能[J].合成橡胶工业,2024,2:110-114.
 WANG Yu-ru,REN He,NI Shuang-yang,et al.Preparation and properties of butene-based elastomer[J].China synthetic rubber industy,2024,2:110-114.
点击复制

丁烯基弹性体的制备与性能(PDF)

《合成橡胶工业》[ISSN:1000-1255/CN:62-1036/TQ]

期数:
2024年2期
页码:
110-114
栏目:
出版日期:
1900-01-01

文章信息/Info

Title:
Preparation and properties of butene-based elastomer
文章编号:
1000-1255(2024)02-0110-05
作者:
王玉如任 鹤倪双阳曹婷婷
中国石油石油化工研究院 大庆化工研究中心,黑龙江 大庆 163714
Author(s):
WANG Yu-ru REN He NI Shuang-yang CAO Ting-ting
Daqing Petrochemical Research Center, Petrochemical Research Institute, PetroChina, Daqing 163714, China
关键词:
负载钛系催化剂聚烯烃弹性体丁烯-1己烯-1无规共聚聚合工艺物理机械性能
Keywords:
supported titanium catalyst polyolefin elastomer butene-1 hexene-1 random copolymerizationpolymerization process physical and mechanical property
分类号:
TQ 334.2
DOI:
DOI:10.19908/j.cnki.ISSN1000-1255.2024.02.0110
文献标识码:
A
摘要:
采用自制的负载钛系催化剂催化丁烯-1与己烯-1进行本体聚合制备了丁烯基弹性体,开展了聚合工艺优化研究,通过核磁共振波谱和差示扫描量热表征了共聚物的结构,考察了共聚物的物理机械性能。结果表明,最佳聚合工艺条件:n(单体)/n(催化剂)为20 000~25 000,n(三乙基铝)/n(负载钛系催化剂)为250~300,聚合温度为45 ℃,聚合时间为4 h,氢气压力为0.10~0.15 MPa;共聚物含有丁烯-1与己烯-1的无规共聚结构且无固定熔点;随着共聚单体己烯-1用量的增加,共聚物的拉伸强度和弹性模量均减小,当加入己烯-1质量分数为20%时,共聚物的断裂标称应变达到534%。
Abstract:
Butene-based elastomers were prepared by bulk polymerization of butene-1 and he-xene-1 using self-made supported titanium catalyst, and the optimization of polymerization process was studied. The structure of the copolymers was characterized by nuclear magnetic resonance spectrometer and differential scanning calorimetry, and the physical and mechanical properties of the copolymers were investigated. The results showed that the optimum polymerization conditions were as follow:n(monomers)/n(catalyst) was in range of 20 000 to 25 000, n(triethylaluminum)/n(supported titanium catalyst) was in range of 250 to 300, reaction tem-perature was 45 ℃, reaction time was 4 h,hydrogen pressure was in range of 0.10 to 0.15 MPa. The copolymer contained a random copolymer structure of butene-1 and hexene-1. The copolymer had no fixed melting point. The tensile strength and elastic modulus of the copolymer decreased with the increase of the amount of hexene-1, and the nominal fracture strain of the copolymer reached 534% when the mass fraction of hexene-1 was 20%.

参考文献/References

[1] Bensason S, Minick J, Moet A, et al. Classification of homogeneous ethylene-octene copolymers based on comonomer content[J]. Journal of Polymer Science (Part B): Polymer Physics, 1996, 34(7): 1301-1315.[2] Drobny J G. Handbook of thermoplastic elastomers[M]. 2nd edition. Amsterdam,Holland: Eisevier,2014: 154-155.[3] 罗理琼. 聚烯烃弹性体POE的设计与定制[D]. 杭州: 浙江大学, 2022.[4] Trube J, Metz A, Fischer M. International technology roadmap for photovoltaic (itrpv) 2016 results [C]. International Technology Roadmap for Photovoltaic, 2017.[5] 殷杰. 国内外聚烯烃弹性体系列产品的研发现状[J]. 弹性体, 2014, 24(6): 81-86.[6] 贺小进. 茂金属聚烯烃弹性体POE研究进展[J]. 化工新型材料, 2011, 39(2): 32-35.[7] 王静, 史永森, 李亚玲,等. 聚烯烃弹性体催化剂研究进展[J]. 分子催化, 2020, 34(6): 579-591.[8] 赵燕, 徐典宏, 李楠, 等. 聚烯烃弹性体技术研究与应用进展[J]. 合成橡胶工业, 2020, 43(6): 514-520.

备注/Memo

备注/Memo:
-
更新日期/Last Update: 1900-01-01