|本期目录/Table of Contents|

[1]江 帆 a,刘新玉 a,田庆丰 b?鄢,等.微米/纳米二氧化硅共填充制备天然橡胶/二氧化硅复合材料及其性能[J].合成橡胶工业,2024,1:33-40.
 JIANG Fan a,LIU Xin-yu a,et al.Preparation and properties of natural rubber/silica composite with micron/nano silica co-filling[J].China synthetic rubber industy,2024,1:33-40.
点击复制

微米/纳米二氧化硅共填充制备天然橡胶/二氧化硅复合材料及其性能(PDF)

《合成橡胶工业》[ISSN:1000-1255/CN:62-1036/TQ]

期数:
2024年1期
页码:
33-40
栏目:
出版日期:
1900-01-01

文章信息/Info

Title:
Preparation and properties of natural rubber/silica composite with micron/nano silica co-filling
文章编号:
1000-1255(2024)01-0033-08
作者:
江 帆1 a2刘新玉1 a田庆丰1 b?鄢丁 涛1 a?鄢
1. 河南大学 a. 化学与分子科学学院, b. 能源科学与技术学院; 河南 开封475004; 2. 广州市巍跋然胶业有限公司,广州 510800
Author(s):
JIANG Fan1 a 2 LIU Xin-yu1 a TIAN Qing-feng1 b DING Tao1 a
1. a. College of Chemistry and Molecular Sciences, b. School of Energy Science and Technology, Henan University, Kaifeng 475004, China; 2. Guangzhou Vibram Rubber Company Ltd, Guangzhou 510800, China
关键词:
二氧化硅天然橡胶微米/纳米共填充紧密结合胶层湿法混炼Payne效应拉伸性能
Keywords:
silica natural rubber micro/nano co-filling tight bound rubber wet mixing Payne effect tensile property
分类号:
TQ 332.5
DOI:
DOI:10.19908/j.cnki.ISSN1000-1255.2024.01.0033
文献标识码:
A
摘要:
采用湿法混炼工艺制备了二氧化硅分散粒径为100 nm的天然橡胶/二氧化硅复合材料胶母粒,结合传统干法混炼技术制备了二氧化硅总填充量为60份(质量)的微米/纳米共填充天然橡胶/二氧化硅复合材料。结果显示,湿法混炼过程中填充的小粒径二氧化硅仍然以小粒径分散,与橡胶分子链更倾向于形成紧密结合层。湿法混炼技术的使用提升了二氧化硅的分散性,复合材料的Payne效应更弱。与干法混炼技术并用制备的小粒径与大粒径二氧化硅比例为50/10时,填料形成了较宽的粒径分布,形成了适中的填料-橡胶结合强度,进一步提升了天然橡胶/二氧化硅复合材料的拉伸强度和扯断伸长率。
Abstract:
Natural rubber/silica composite masterbatch with dispersed silica particle size of 100 nm was prepared by wet mixing process, and micron/nano co-filled natural rubber/silica composite with a total silica filling amount of 60 phr (mass) was prepared by traditional dry mixing process. The results showed that the silica with small particle size filled in the wet mixing process was still dispersed in its primitive size, and tended to form a tight bound rubber layer. The use of wet mixing process improved the dispersion of silica, and weakened the Payne effect of the composites. When the ratio of small to large silica particles prepared in combination with dry mixing process was 50/10, the wider particle size distribution of the filler was formed, and the silica-rubber binding strength was moderate, which further improved the tensile strength and elongation at break of natural rubber/silica composite.

参考文献/References

[1] Chen Y, Lin H, Lee Y. The effects of filler content and size on the properties of PTFE/SiO2 composites[J]. Journal of Polymer Research, 2003, 10(4): 247-258.[2] 邹志强, 吴唯, 王懿, 等. 形貌可控氧化铝对硅橡胶复合材料导热性能的影响[J]. 高分子材料科学与工程, 2020, 36(4): 128-134.[3] Zou Yongkun, He Jingwei, Tang Zhenghai, et al. Structural and mechanical properties of styrene-butadiene rubber/silica composites with an interface modified in-situ using a novel hindered phenol antioxidant and its samarium complex[J]. Composites Science and Technology, 2020, 188: 107984.[4] 吴凡, 吴新民, 宋永海, 等. 二氧化硅杂化改性氯化聚乙烯橡胶的制备与性能[J]. 合成橡胶工业, 2017, 40(4): 267-270.[5] 张芳芳. SiO2形貌及粒径对聚烯烃复合树脂介电特性的影响研究[D]. 成都: 电子科技大学, 2019.[6] Ichazo M N, Albano C, Hernández M, et al. Effects of particle size and size distribution on the mechanical properties of EPDM/silica vulcanizates[J]. Advanced Materials Research, 2008, 47/48/49/50: 113-116.[7] Li Yan, Han Bingyong, Wen Shipeng, et al. Effect of the temperature on surface modification of silica and properties of modified silica filled rubber composites[J]. Composites (Part A): Applied Science and Manufacturing, 2014, 62: 52-59.[8] 王利杰. 炭黑粒径、粒径分布及结构对SSBR/BR并用胶性能的影响[J]. 特种橡胶制品, 2020, 41(1): 20-23.[9] Xiong Yuqi, Shen Simin, Kang Ming, et al. Effect of fluore-scence labeling on mechanical properties of silica filled silicone rubber[J]. Polymer, 2020, 208: 122904.[10] 舒杨, 王继虎, 温绍国, 等. 壳聚糖改性二氧化硅/天然橡胶复合材料的性能[J]. 合成橡胶工业, 2016, 39(2): 145-149.[11] 张治军, 李小红, 田庆丰, 等. 一种天然橡胶/纳米二氧化硅复合材料及其制备方法: 中国, 201911362555.X[P]. 2021-01-26.[12] 田庆丰, 唐源, 刘亚兰, 等. 表面功能化纳米SiO2的制备及其在溶液聚合丁苯橡胶-顺丁橡胶中的应用[J]. 复合材料学报, 2020, 37(7): 1703-1712.[13] Zhong Xinke, Song Yihu, Zheng Qiang. Payne effect and Mullins effect of silica filled butadiene rubber nanocomposites vulcanizates and their unextractable gels[J]. Polymer, 2023, 267: 125634.[14] Huang Longjin, Yu Fengmei, Liu Yu, et al. Structural analyses of the bound rubber in silica-filled silicone rubber nanocomposites reveal mechanisms of filler-rubber interaction[J]. Composites Science and Technology, 2023, 233: 109905.[15] Tian Qingfeng, Zhang Chunhua, Tang Yuan, et al. Preparation of hexamethyl disilazane-surface functionalized nano-silica by controlling surface chemistry and its‘agglomeration-collapse’ behavior in solution polymerized styrene butadiene rubber/butadiene rubber composites[J]. Composites Science and Technology, 2021, 201: 108482.

备注/Memo

备注/Memo:
河南省科技攻关项目(232102230087);河南省高等学校重点科研计划项目(24 B 150007)。
更新日期/Last Update: 1900-01-01