|本期目录/Table of Contents|

[1]陈大鹏,王 灿,熊其鹏,等.动态流变行为在三元乙丙橡胶/硅橡胶共混物形态结构研究中的应用[J].合成橡胶工业,2024,1:22-28.
 CHEN Da-peng,WANG Can,XIONG Qi-peng,et al.Application of dynamic rheological behavior in research on morphology and structure of ethylene-propylene-diene rubber/silicone rubber blends[J].China synthetic rubber industy,2024,1:22-28.
点击复制

动态流变行为在三元乙丙橡胶/硅橡胶共混物形态结构研究中的应用(PDF)

《合成橡胶工业》[ISSN:1000-1255/CN:62-1036/TQ]

期数:
2024年1期
页码:
22-28
栏目:
出版日期:
1900-01-01

文章信息/Info

Title:
Application of dynamic rheological behavior in research on morphology and structure of ethylene-propylene-diene rubber/silicone rubber blends
文章编号:
1000-1255(2024)01-0022-07
作者:
陈大鹏12王 灿1熊其鹏1罗权焜1吴叔青1?鄢
1. 华南理工大学 材料科学与工程学院/广东省高性能与功能高分子材料重点实验室,广州 510640; 2. 广东美的制冷设备有限公司,广东 佛山 528311
Author(s):
CHEN Da-peng12 WANG Can1 XIONG Qi-peng1 LUO Quan-kun1 WU Shu-qing1
1. School of Materials Science and Engineering / Guangdong Provincial Key Laboratory of High Performance and Functional Polymer Materials, South China University of Technology, Guangzhou 510640, China; 2. Guangdong Midea Refrigeration Equipment Co Ltd, Foshan 528311, China
关键词:
三元乙丙橡胶硅橡胶共混物动态流变行为形态结构界面交联作用界面相容作用
Keywords:
ethylene-propylene-diene rubber silicone rubber blends dynamic rheological beha-vior morphological structure interfacial crosslinking effect interface compatibility
分类号:
TQ 330.1+7
DOI:
DOI:10.19908/j.cnki.ISSN1000-1255.2024.01.0022
文献标识码:
A
摘要:
利用开放式炼胶机制备了三元乙丙橡胶(EPDM)与硅橡胶(SR)混炼胶和单相硫化硅橡胶(v-SR)的共混胶,通过流变行为研究了组成比例、界面交联作用等对共混体系形态结构的影响,并采用扫描电子显微镜和两相剥离强度对形态结构的研究结果进行了验证。结果表明,动态流变行为成功预测了高黏度聚合物复合体系的形态结构。共混物中EPDM的用量在30~70份(质量,下同)时,EPDM/SR混炼胶的形态呈双相连续结构。用超过1份的过氧化物交联剂对EPDM用量为70份的EPDM/SR混炼胶中的SR进行单相交联,v-SR的连续结构发生了融合,转变成颗粒状结构,且颗粒结构的相畴随着交联剂用量的增加而增大,而高剂量的交联剂可以使两相形成共交联。
Abstract:
The blends of ethylene-propylene-diene rubber (EPDM) with silicone rubber (SR) and single-phase vulcanized silicone rubber (v-SR) were prepared using open rubber mixer, and the effects of composition ratio and interfacial crosslinking effect on the morphological structure of the blends were investigated by rheological behaviors, and the results of the morphological structure were verified using scanning electron microscopy and two-phase peel strength. The results showed that dynamic rheological behavior predicted successfully the morphological structure of high-viscosity polymer composite systems. When the amount of EPDM in the blend was 30-70 phr (mass, the same below), the morphological structure of the EPDM/SR blends exhibited two-phase continuous structure. Single-phase crosslin-king of SR in EPDM/SR blend with more than 1 phr of peroxide crosslinking agent in the amount of 70 phr of EPDM resulted in the fusion of the continuous structure of v-SR, which was transformed into a granular structure, and the phase domains of the granular structure increased with the increase in the amount of the crosslinking agent, whereas the high amount of the crosslinking agent resulted in the formation of a co-crosslinking of the two phases.

参考文献/References

[1] Cai Yuquan, Zheng Jieyuan, Hu Yang, et al. The preparation of polyolefin elastomer functionalized with polysiloxane and its effect inethylene-propylene-diene monomer/silicon rubber blends[J]. European Polymer Journal, 2022, 177: 11468. [2] Monika G, Magdalena L, Miroslav M, et al. Polyacrylamide brushes with varied morphologies as a tool forcontrol of the intermolecular interactions within EPDM/MVQ blends[J]. Polymer, 2021, 215: 123387. [3] Si Q B, Zhou C, Yang H D, et al. Toughening of polyvinylchloride by core-shell rubber particles: Influence of the internal structure of core-shell particles[J]. European Polymer Journal, 2007, 43(7): 3060-3067. [4] Du Miao, Zheng Qiang and Yang Hongmei. Dynamic rheological behavior for polymer composites filled with particles[J]. Nihon Reoroji Gakkaishi, 2003, 31(5): 305-311. [5] Zheng Qiang, Zuo Min. Investigation of structure and properties for polymer systems based on dynamic rheological approaches[J]. Chinese Journal of Polymer Science, 2005, 23(4): 341-354. [6] Bi W, Goegelein C, Hoch M, et al. Effect of silane coupling agents on the rheology,dynamic and mechanical properties of ethylene propylene diene rubber / calcium carbonate composites[J]. Polymers, 2022, 14(16): 3393. [7] Liu Jingru, Liang Hongwei. Morphological and structural pro-perties of isotactic polypropylene filled with nano-zinc oxide as investigated by dynamic rheology,creep and recovery in shear[J]. Polymer Bulletin, 2022, 79(9): 7923-7937. [8] Hu Qiao, Maazouz A, Lamnawar K. Study of morphology, rheology and dynamic properties toward unveiling the partial miscibility in poly(lactic acid)-poly(hydroxybutyrate-co-hydroxyvalerate) blends[J]. Polymers, 2022, 14(24): 5359.[9] 贺婉, 张风顺, 罗世凯. 三元乙丙橡胶/硅橡胶交替多层复合材料的制备与性能[J]. 合成橡胶工业, 2020, 43(6): 477-481. [10] 左继成, 谷亚新. 高分子材料成型加工基本原理及工艺[M]. 北京: 北京理工大学, 2017. [11] Xu Qiang, Pang Minglei, Zhu Lixia, et al. Mechanical properties of silicone rubber composed of diverse vinyl content silicone gums blending[J]. Materials and Design, 2010, 31(9): 4083-4087. [12] Wang Kunyan, Chen Yanmo, Zhang Yu. Effects of organoclay platelets on morphology and mechanical properties in PTT/EPDM-g-MA/organoclayd ternary nanocomposites[J]. Polymer, 2008, 49(15): 3301-3309. [13] 姜苏俊. 二元聚合物及含填料的三元共混体系相行为的动态流变学研究[D]. 成都: 四川大学, 2019. [14] Di Yingwei, Salvatore I, Luigi N. Thermal behavior and morphological and rheological properties of polypropylene and no-vel elastomeric ethylene copolymer blends[J]. Journal of Applied Polymer Science, 2002, 86(13): 3430-3439. [15] Jeon H S, Nakatani A I, Han C C. Melt rheology of lower critical solution temperature polybutadiene/polyisoprene blends[J]. Macromolecules, 2000, 33(26): 9732-9739. [16] Orazioa L D, Mancarellaa C, Martuscellia E, et al. Isotactic polypropylene/ethylene-co-propylene blends: Effects of the copolymer microstructure and content on rheology, morphology and properties of injection moulded samples[J]. Polymer, 1999, 40(10): 2745-2757. [17] Seyed H J, Mohammad N H, Hossein A K, et al. Correlation of rheology and morphology and estimation of interfacial tension of immiscible COC/EVA blends[J]. Journal of Polymer Research, 2011, 18(4): 821-831. [18] Maria J O C G, Fernanda M B C, Marisa C G R, et al. Rheological and morphological properties of high-density polyethylene and poly(ethylene-octene) blends[J]. Journal of Applied Polymer Science, 2002, 86: 2240-2246. [19] Li Runming, Yu Wei, Zhou Chixing. Rheological characterization of droplet-matrix versus co-continuous morphology[J]. Journal of Macromolecular Science (Part B): Physics, 2006, 45(5): 889-898. [20] 陈大鹏. EPDM/MVQ共混胶的形态结构及界面相互作用的研究[D]. 广州: 华南理工大学, 2020. [21] Onur B, Ayhan E. Rheological behaviors of glass bead- and wollastonite-filled polypropylene composites modified with thermoplastic elastomers[J]. Polymer Composites, 2012, 33(7): 1162-1187. [22] Kontopoulou M, Wang W, Gopakumar T G, et al. Effect of composition and comonomer type on the rheology, morphology and properties of ethylene-α-olefin copolymer/polypropylene blends[J]. Polymer, 2003, 44(24): 7495-7504. [23] Christian C, Souad M, Mohamed J, et al. Immiscible blends of PC and PET, current knowledge and new results: Rheological properties[J]. Macromolecular Materials and Engineering, 2007, 292(6): 693-706. [24] Shib S B, Anil K B. Viscoelastic properties and melt rheology of novel polyamide 6/fluoroelastomer nanostructured thermoplastic vulcanizates[J]. Journal of Materials Science, 2016, 51(1): 252-261.

备注/Memo

备注/Memo:
广州市产学研协同创新重大专项民生科技研究项目(1561000293)。
更新日期/Last Update: 1900-01-01