|本期目录/Table of Contents|

[1]郑 涛,龙飞飞,邵红琪.硅烷偶联剂并用体系对白炭黑/溶聚丁苯橡胶/天然橡胶复合材料结构和性能的影响[J].合成橡胶工业,2023,6:538-544.
 ZHENG Tao,LONG Fei-fei,SHAO Hong-qi.Effect of silane coupling agent blend system on structure and properties of silica/solution-polymerized butadiene-styrene rubber/natural rubber composite[J].China synthetic rubber industy,2023,6:538-544.
点击复制

硅烷偶联剂并用体系对白炭黑/溶聚丁苯橡胶/天然橡胶复合材料结构和性能的影响(PDF)

《合成橡胶工业》[ISSN:1000-1255/CN:62-1036/TQ]

期数:
2023年6期
页码:
538-544
栏目:
出版日期:
2023-11-15

文章信息/Info

Title:
Effect of silane coupling agent blend system on structure and properties of silica/solution-polymerized butadiene-styrene rubber/natural rubber composite
文章编号:
1000-1255(2023)06-0538-07
作者:
郑 涛1龙飞飞1邵红琪2
1. 山东丰源轮胎制造股份有限公司,山东 枣庄 277300; 2. 山东省科学技术情报研究院,济南 250101
Author(s):
ZHENG Tao1 LONG Fei-fei1 SHAO Hong-qi2
1. Shandong Fengyuan Tire Manufacturing Co Ltd, Zaozhuang 277300, China; 2. Shandong Institute of Scientific and Technical Information, Jinan 250101, China
关键词:
溶聚丁苯橡胶天然橡胶硅烷偶联剂白炭黑复合材料滚动阻力物理机械性能动态力学性能
Keywords:
solution-polymerized butadiene-styrene rubber natural rubber silane coupling agent silica composite rolling resistance physial and mechanical property dynamic mechanical pro-perty
分类号:
TQ 330.7+3
DOI:
DOI:10.19908/j.cnki.ISSN1000-1255.2023.06.0538
文献标识码:
B
摘要:
以硅烷偶联剂双[3-(三乙氧基硅)丙基]四硫化物(Si 69)和3-巯丙基乙氧基双(丙烷基-六乙氧基-硅氧烷)(Si 747)为改性剂,采用机械混炼法制备了白炭黑/溶聚丁苯橡胶/天然橡胶复合材料,研究了硅烷偶联剂种类和用量对复合材料微观结构、硫化特性、加工性能、物理机械性能、动态力学性能和成品轮胎性能的影响,以及复合材料结构与性能的关系。结果表明,相较于单独使用Si 69,添加Si 747后复合材料的焦烧时间和工艺正硫化时间均明显缩短,硫化速率随着Si 747用量的增加逐渐加快;硅烷偶联剂Si 69和Si 747协同改性使得复合材料的拉伸强度、回弹性和300%定伸应力等均降低;当Si 747用量增加时,用以表征复合材料储能模量对温度依赖性的活化能逐渐降低;添加Si 747后复合材料中白炭黑的分散性明显改善;单独使用Si 747改性的复合材料在0 ℃的损耗因子(tan δ)明显增加,而在60 ℃的tan δ明显降低;轮胎滚动阻力随着Si 747用量的增加逐渐降低。
Abstract:
Silica/solution-polymerized butadiene-styrene rubber (SSBR)/natural rubber (NR) compo-sites were prepared by mechanical mixing method with silane coupling agent, bis[3-(triethoxysilyl)propyl]tetrasulfide (Si 69) and 3-mercaptopropyl-ethyoxyl-di(tridecyl-pentamethoxy)-silane (Si 747), as modifier and the effect of types and addtion amounts of silane coupling agent on the microstructure, curing characteristics, processing performance, physical and mechanical performance, dynamic mechanical properties, tire performance, and the relationship between structure and performance of the composite. The results showed that compared with the composite just only modified by Si 69, the incorporation of Si 747 resulted in the scorch time and optimum curing time of the composite shorten signi-ficantly, and the curing rate improved gradually with the increase in the addition amount of Si 747; the synergistic modification of Si 69 and Si 747 made the physical and mechanical properties, tensile strength, resilience and modulus at 300% of the composite all reduced; when the addition amount of Si 747 increased, the apparent activation energy which was used to characterize the temperature dependence of storage modulus of the composite reduced gradually; the dispersion of silica in the composite improved significantly after the addition of Si 747; the loss factor (tan δ) of the composite modified by Si 747 alone at 0 ℃ increased significantly and tan δ at 60 ℃ decreased significantly; the rolling resistance of the tire improved gradually with the increase in the addition amount of Si 747.

参考文献/References

[1] 吴一弦. 制造高性能轮胎的合成橡胶及复合材料技术[J]. 科学通报, 2016, 61(31): 1.[2] Choi SungSeen, Eunah Ko. Novel test method to estimate bound rubber formation of silica-filled solution styrene-butadiene rubber compounds[J]. Polymer Testing, 2014, 40: 170-177.[3] Wang Yuanxia, Wu Youping, Li Wenji, et al. Influence of filler type on wet skid resistance of SSBR/BR composites: Effects from roughness and micro-hardness of rubber surface[J]. Applied Surface Science, 2011, 257(6): 2058-2065.[4] Pan Xiaodong. Wet sliding friction of elastomer compounds on a rough surface under varied lubrication conditions[J]. Wear, 2007, 262(5/6): 707-717.[5] Song Yihu, Sun Jin, Zheng Qiang. Dynamic rheological beha-vior of SSBR/SiO2 compounds[J]. Acta Polymerica Sinica, 2009, 9(8): 729-734.[6] Li Xiangyan, Feng Yuxing, Chu Guangyu, et al. Directly and quantitatively studying the interfacial interaction between SiO2 and elastomer by using peak force AFM[J]. Composites Communications, 2018, 7: 36-41.[7] 郑涛, 邵红琪, 吴晓辉, 等.硅烷偶联剂原位改性白炭黑/溶聚丁苯橡胶复合材料的流变性能和力学性能研究[J]. 橡胶工业, 2022, 69(9): 652-658.[8] 杨宏辉. 欧盟或将在2020年启用新轮胎标签法[J]. 中国橡胶, 2018, 34(7): 6-9.[9] 王检, 刘力. 不同结构白炭黑对绿色轮胎胎面胶性能的影响[J]. 橡胶工业, 2019, 66(2): 106-110.[10] 蔡磊, 赵远进, 张新萍, 等. 表面改性SiO2对SSBR/BR绿色轮胎胎面胶结构与性能的影响[J]. 高等学校化学学报, 2019, 40(11): 2388-2395.[11] Zhou Ming, Song Yihu, Sun Jin, et al. Effect of silane coupling agents on dynamic rheological properties for unvulcanized SSBR/Silica compounds[J]. Acta Polymerica Sinica, 2007, 7(2): 153-157.[12] 崔凌峰, 熊玉竹, 戴骏, 等. 改性白炭黑/天然橡胶复合材料的制备及性能[J]. 高分子材料科学与工程, 2017, 33(5): 158-163.[13] 夏立建, 阚泽. 偶联剂Si 747原位改性单分散SiO2/天然橡胶复合材料的结构与性能[J]. 复合材料学报, 2019, 36(11): 2699-2709.[14] 李雯, 任衍峰, 夏荣芝, 等. Si 69/Si 747与不同胶种的反应活性研究[J]. 中国橡胶, 2019, 35(9): 52-56.[15] 郑涛, 邵红旗. 改性溶聚丁苯橡胶对轮胎胎面胶性能的影响[J]. 合成橡胶工业, 2020, 43(5): 414-418.[16] Shao Hongqi, Wei Hang, He Jionghao. Dynamic properties and tire performances of composites filled with carbon nanotubes[J]. Rubber Chemistry and Technology, 2018, 91(3): 609-620.[17] Li Yan, Han Bingyong, Liu Li, et al. Surface modification of silica by two-step method and properties of solution styrene butadiene rubber (SSBR) nanocomposites filled with modified silica[J]. Composites Science and Technology, 2013, 88: 69-75.[18] Mohammad-Reza P, Razzaghi-Kashani M. Effect of silica particle size on chain dynamics and frictional properties of styrene butadiene rubber nano and micro composites[J]. Polymer, 2014, 55(9): 2279-2284.

备注/Memo

备注/Memo:
山东省重大科技创新工程项目(2018 CXGC 0605)。
更新日期/Last Update: 2023-11-15