|本期目录/Table of Contents|

[1]张 帅,王联芳,赵 旭,等.岩沥青/胶粉复合改性沥青性能与黏弹性分析[J].合成橡胶工业,2022,6:479-486.
 ZHANG Shuai,WANG Lian-fang,ZHAO Xu,et al.Performance and viscoelastic analysis of rock asphalt/rubber powder co-modified asphalt[J].China synthetic rubber industy,2022,6:479-486.
点击复制

岩沥青/胶粉复合改性沥青性能与黏弹性分析(PDF)

《合成橡胶工业》[ISSN:1000-1255/CN:62-1036/TQ]

期数:
2022年6期
页码:
479-486
栏目:
出版日期:
2022-11-15

文章信息/Info

Title:
Performance and viscoelastic analysis of rock asphalt/rubber powder co-modified asphalt
文章编号:
1000-1255(2022)06-0479-08
作者:
张 帅王联芳赵 旭刘怡美
1. 河北交规院瑞志交通技术咨询有限公司, 石家庄 050011; 2. 河北省公路安全感知与监测重点实验室, 石家庄 050011; 3. 河北省高速公路京雄高速筹建处, 河北 保定 071700
Author(s):
ZHANG Shuai12 WANG Lian-fang12 ZHAO Xu1 LIU Yi-mei3
1. Hebei Traffic Planning and Research Institute Ruizhi Traffic Technology Consulting Co Ltd, Shijiazhuang 050011, China; 2. Hebei Provincial Key Laboratory of Highway Safety Sense and Monitoring, Shijiazhuang 050011, China; 3. Hebei Provincial Expressway Beijing-Xiongan Expressway Preparation office, Baoding 071700, China
关键词:
岩沥青胶粉复合改性沥青Burgers本构方程储存稳定性流变性能变形恢复能力黏弹性
Keywords:
rock asphalt rubber powder co-modified asphalt Burgers constitutive equation storage stability rheological property deformation resilience viscoelasticity
分类号:
U 414
DOI:
DOI:10.19908/j.cnki.ISSN1000-1255.2022.06.0479
文献标识码:
B
摘要:
使用青川岩沥青和胶粉对基质沥青进行复合改性,在保持胶粉质量分数为20%不变的情况下改变岩沥青用量制得胶粉改性和岩沥青/胶粉复合改性沥青,通过针入度试验、动态剪切流变试验和重复应力蠕变恢复试验分别对改性沥青的宏观性能、储存稳定性、流变性能和变形恢复能力进行了分析,并采用Burgers本构方程模拟分析了改性沥青在持续应力加载下各组成变形部分占比的变化规律。结果表明,胶粉和岩沥青的加入均可大幅提高沥青的高温性能,使其变得黏稠;岩沥青的加入对于基质沥青的低温性能具有较强的削弱作用,但可改善其储存稳定性,而胶粉的加入可减小岩沥青对基质沥青低温性能的削弱作用;岩沥青的加入提高了改性沥青的抗车辙能力,使沥青弹性组分含量大幅增加,但并未对黏性组分产生较大影响,沥青抵抗较大荷载的能力得以增强,而应力敏感性则有所降低,复合改性沥青黏稠度缓慢增加的同时迅速变硬,在受较长时间的大荷载作用时变形也能较快恢复。
Abstract:
Qingchuan rock asphalt and rubber powder were used to modify the basis asphalt, and rubber powder modified asphalt and rock asphalt/rubber powder co-modified asphalt were prepared by changing the amount of rock asphalt with the constant mass fraction of 20% of rubber powder. The macroscopic properties, storage stability, rheological properties and deformation resilience were analyzed by penetration test, dynamic shear rheological test and multi stress repeated creep test, and Burgers constitutive equation was used to simulate and analyze the change law of the proportion of each component of modified asphalt under sustained stress loading. The results showed that the addition of rubber powder and rock asphalt could greatly improve the high-temperature performance of the basis asphalt and make the basis asphalt become viscous. The addition of rock asphalt had a strong weakening effect on the low-temperature performance of basis asphalt, but could improve its storage stability, while the addition of rubber powder could reduce the weakening effect of rock asphalt on the low-temperature performance of basis asphalt. The addition of rock asphalt improved the rutting resistance of the modified asphalt and increased greatly the content of elastic components of the basis asphalt, but did not make a significant difference to the content of viscous components. The ability of the basis asphalt to resist large loading was enhanced, while the stress sensitivity was reduced. The viscosity of rock asphalt/rubber powder co-modified asphalt increased slowly and rock asphalt/rubber powder co-modified asphalt hardened quickly, so that the deformation could quickly recover when subjected to large loading for a longer time.

参考文献/References

[1] 尤凤兵, 田永静, 沈菊男, 等. 低温等离子体活化胶粉改性沥青的性能[J]. 环境工程学报, 2017, 11(2): 1080-1086.[2] 李薇. 岩沥青复合改性沥青老化前后的流变特性与微观机理研究[D]. 大连: 大连海事大学, 2019.[3] 陈凯, 何霁微. 岩沥青-丁苯橡胶复合改性沥青路用性能研究[J]. 中外公路, 2020, 40(2): 249-253.[4] Fan Xiyan, Lu Weiwei, Lv Songtao, et al. Improvement of low-temperature performance of Buton rock asphalt composite mo-dified asphalt by adding styrene-butadiene rubber[J]. Materials, 2019, 12(15): 2358.[5] Wen Yankai, Guo Naisheng, Wang Lin, et al. Rheological properties and microscopic mechanism of rock asphalt compo-site modified asphalts[J]. Construction and Building Materials, 2021, 281: 122543.[6] 乔阳. 布敦岩沥青与40目橡胶粉复合改性沥青及其混合料的路用性能研究[D]. 昆明: 昆明理工大学, 2019.[7] 秦慧. 国产岩沥青与TB胶粉复合沥青性能及改性机理研究[J]. 公路工程, 2017, 42(5): 364-372.[8] 王淋, 郭乃胜, 温彦凯, 等. 考虑老化影响的岩沥青复合改性沥青流变特性及微观机制[J]. 材料导报, 2020, 34(18): 18065-18073.[9] Hajikarimi P, Aflaki S, Hoseini A S. Implementing fractional viscoelastic model to evaluate low temperature characteristics of crumb rubber and gilsonite modified asphalt binders[J]. Construction and Building Materials, 2013, 49: 682-687.[10] 张帅. 基于SMA的废胶粉改性沥青混合料性能试验研 究[D]. 保定: 河北大学, 2017.[11] 马峰, 王蒙蒙, 傅珍, 等. SEBS/橡胶粉复合改性沥青高温流变性研究[J]. 公路工程, 2020, 45(6): 59-65.[12] Liu Weihong, Xu Yishen, Wang Hongjun, et al. Enhanced storage stability and rheological properties of asphalt modified by activated waste rubber powder[J]. Materials, 2021, 14(10): 2693.[13] 王枫, 许有俊. 基于动态剪切流变仪试验的多聚磷酸改性沥青流变特性[J]. 科学技术与工程, 2021, 21(31): 13516-13521.[14] 吴源锋, 廖军, 黄晚清, 等.基于MSCR试验的BRA改性沥青高温性能分析[J]. 中外公路, 2021, 41(5): 238-243.[15] 崔鹰翔, 郝培文. 基于MSCR试验的橡胶改性沥青高温性能[J]. 筑路机械与施工机械化, 2019, 36(4): 47-51.[16] 林江涛, 樊亮. 基于MSCR试验及Burgers模型分析的沥青高温性能评价[J]. 公路交通科技, 2018, 35(6): 22-29.[17] 赵增刚. LUCOBIT/橡胶复合改性沥青流变及粘附特性研 究[D]. 长沙: 湘潭大学, 2020.[18] Ma Wenbo, Zhao Zenggang, Li Peng, et al. Shear creep properties of weak interlayer in slope based on stationary parameter fractional derivative Burgers model[J]. Soils and Rocks, 2019, 42(3): 337-348.

备注/Memo

备注/Memo:
更新日期/Last Update: 2022-11-15