|本期目录/Table of Contents|

[1]毛 鑫,吕 博,赵鹏举,等.聚丁二酸丁二醇酯基共聚物及其多嵌段共聚物的合成与性能[J].合成橡胶工业,2022,6:439-448.
 MAO Xin,L Bo,ZHAO Peng-ju,et al.Synthesis and properties of poly(butylene succinate) based copolymers and multi-block copolymers[J].China synthetic rubber industy,2022,6:439-448.
点击复制

聚丁二酸丁二醇酯基共聚物及其多嵌段共聚物的合成与性能(PDF)

《合成橡胶工业》[ISSN:1000-1255/CN:62-1036/TQ]

期数:
2022年6期
页码:
439-448
栏目:
出版日期:
2022-11-15

文章信息/Info

Title:
Synthesis and properties of poly(butylene succinate) based copolymers and multi-block copolymers
文章编号:
1000-1255(2022)06-0439-10
作者:
毛 鑫吕 博赵鹏举鱼海龙崔锦峰郭军红杨保平
兰州理工大学 石油化工学院, 兰州 730050
Author(s):
MAO Xin L■ Bo ZHAO Peng-ju YU Hai-long CUI Jin-feng GUO Jun-hong YANG Bao-ping
College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
关键词:
丁二酸酐端羟基二元醇聚丁二酸丁二醇酯一步法共聚反应嵌段共聚合物热性能生物降解性能
Keywords:
succinic anhydride terminal hydroxy diol poly(butylene succinate) one-step method copolymerization block copolymer thermal property biodegradabilit
分类号:
TQ 334.1
DOI:
DOI:10.19908/j.cnki.ISSN1000-1255.2022.06.0439
文献标识码:
B
摘要:
采用“一步法”,以丁二酸酐(SAA)和1,4–丁二醇(BDO)为单体、端羟基二元醇为共聚单体合成了聚丁二酸丁二醇酯(PBS)及一系列端羟基二元醇共聚物,同时使酚酞与SAA的缩聚产物参与SAA和BDO的共聚反应,并通过链段调节合成法制备兼具刚性链段和柔性链段的可生物降解三嵌段共聚聚酯热塑性弹性体聚(丁二酸丁二醇酯-共-酚酞丁二酸丁二醇酯)(SAA-PHE-PBS),研究了PBS及其共聚物的分子量、化学结构组成、热性能和结晶性能,此外,使用南极假丝酵母脂肪酶B测试了PBS及其共聚物的生物降解性能。结果表明,端羟基二元醇共聚物的玻璃化转变温度变化幅度不大,熔融温度无明显改变,结晶度降低,亲水性有所改善,生物降解性能得到大幅度提升;三嵌段热塑性弹性体SAA-PHE-PBS的玻璃化转变温度升高,结晶度与PBS相差不大,疏水性更强,共聚合物的残重率有所增加,生物降解性能有不同程度的降低。
Abstract:
Polybutylene succinate (PBS) and a series of multi-block hydroxyl-terminated diol copolymers were synthesized by a "one-step"method with succinic anhydride (SAA) and 1,4-butanediol (BDO) as monomers, and terminal hydroxy diols as copolymer monomer. The condensation product of phenolphthalein and SAA was used to participate in the copolymerization of SAA and BDO, and biodegradable triblock polyester thermoplastic elastomers with rigid and flexible chain segments, poly(butylene succinate-co-phenolphthalein butylene succinate) (SAA-PHE-PBS), were prepared by the chain modulation synthesis method. The molecular weight, chemical structure composition, thermal properties and crystallization property of PBS and its copolymers were investigated, and their biodegradability was tested with Candida antarctica lipase B. The results showed that the glass transition temperature of multi-block hydroxyl-terminated diol copolymer did not change much, the melting tempe-rature did not change significantly, the crystallinity decreased, the hydrophilicity was improved, and the biodegradability was greatly improved. The glass transition temperature of the triblock thermoplastic elastomer SAA-PHE-PBS was elevated, the crystallinity was not much different from that of PBS, the hydrophobicity was stronger than that of PBS, resi-dual mass fraction of SAA-PHE-PBS increased, and the biodegradability showed different degrees of decline.

参考文献/References

[1] Geyer R, Jambeck J R, Law K L. Production, use, and fate of all plastics ever made[J]. Science Advances, 2017. 3(7): e 1700782.[2] Barnes D K A, Galgani F, Thompson R C, et al. Accumulation and fragmentation of plastic debris in global environments[J]. Philosophical transactions of the Royal Society of London (B): Biological sciences, 2009, 364(1526): 1985-1998.[3] Wagner M, Scherer C, Alvarez-Mu■oz D, et al. Microplastics in freshwater ecosystems: What we know and what we need to know[J]. Environmental Sciences Europe, 2014, 26(1): 12.[4] Pellis A, Malinconico M, Guarneri A, et al. Renewable polymers and plastics: Performance beyond the green[J]. New Biotechnology, 2021, 60: 146-158.[5] Nilsen-Nygaard J, Fernández E N, Radusin T, et al. Current status of biobased and biodegradable food packaging materials: Impact on food quality and effect of innovative processing technologies[J]. Comprehensive Reviews in Food Science and Food Safety, 2021, 20(2): 1333-1380.[6] Vilela C, Sousa A F, Fonseca A C, et al. The quest for sustainable polyesters—insights into the future[J]. Polymer Che-mistry, 2014, 5(9): 3119-3141.[7] Gigli M, Negroni A, Soccio M, et al. Influence of chemical and architectural modifications on the enzymatic hydrolysis of poly(butylene succinate)[J]. Green Chemistry, 2012, 14(10): 2885-2893.[8] Williams C K. Synthesis of functionalized biodegradable polyesters[J]. Chemical Society Reviews, 2007, 36(10): 1573-1580.[9] Thakur S, Chaudhary J, Singh P, et al. Synthesis of bio-based monomers and polymers using microbes for a sustainable bio-economy[J]. Bioresource Technology (Part A), 2022, 344: 126156.[10] Xu Jun, Guo Baohua. Poly(butylene succinate) and its copolymers: Research, development and industrialization[J]. Biotechnology Journal, 2010, 5(11): 1149-1163.[11] ■olnik M, Knez-Hrn■i■ M, ■kerget M, et al. Biodegradable polymers, current trends of research and their applications, a review[J]. Chemical Industry and Chemical Engineering, 2020, 26(4): 401-418.[12] Ren Liwei, Wang Yushen, Ge Jun, et al. Enzymatic synthesis of high-molecular-weight poly(butylene succinate) and its copolymers[J]. Macromolecular Chemistry and Physics, 2015, 216(6): 636-640.[13] Yang Yan, Qiu Zhaobin. Crystallization kinetics and morphology of biodegradable poly(butylene succinate-co-ethylene succinate) copolyesters: Effects of comonomer composition and crystallization temperature[J]. CrystEngComm, 2011, 13(7): 2408-2417.[14] Qiu Zhaobin, Ikehara T, Nishi T. Crystallization behaviour of biodegradable poly(ethylene succinate) from the amorphous state[J]. Polymer, 2003, 44(18): 5429-5437.[15] Jing Jing, Song Li, Su Tingting, et al. Effects of monomer composition on physical properties and enzymatic hydrolyzabi-lity of poly(butylene succinate-co-hexamethylene succinate)s[J]. Polymer Engineering and Science, 2020, 61(2): 379-387.[16] Liang Liuen, Long Junyuan, Li Guangji. Lipase-catalyzed synthesis of hyperbranched polyester improved by autocatalytic prepolymerization process[J]. Journal of Applied Polymer Science, 2019, 136(12): 47221.[17] Lu Jing, Wu Linbo, Li Bogeng. Long chain branched poly(butylene succinate-co-terephthalate) copolyesters using pentaerythritol as branching agent: Synthesis, thermo-mechanical, and rheological properties[J]. Journal of Applied Polymer Science, 2017, 134(9): 44544.[18] Wang Yuhai, Chen Shuanglu, Zhang Song, et al. Crystallization and melting behavior of poly(butylene succinate)/silicon nitride composites: The influence of filler′s phase structure[J]. Thermochimica Acta, 2016, 627/628/629: 68-76.[19] Mochane M J, Magagula S I, Sefadi J S, et al. A review on green composites based on natural fiber-reinforced polybutylene succinate (PBS)[J]. Polymers, 2021, 13(8): 13081200.[20] Gkountela C, Rigopoulou M, Barampouti E M, et al. Enzyma-tic prepolymerization combined with bulk post-polymerization towards the production of bio-based polyesters: The case of poly(butylene succinate)[J]. European Polymer Journal, 2021, 143: 110197.[21] 李铮, 朱晓亮, 林欧亚, 等. 开环法聚丁二酸丁二醇酯性能研究[J]. 上海化工, 2016,41(7): 20-23.[22] 邓艳丽, 杨景辉, 吴传昱. 高摩尔质量PBS的合成工艺研究[J]. 塑料工业, 2011, 39(8): 22-25.[23] 舒静, 王鹏, 郑彤, 等. 熔融缩聚合成聚L-乳酸的研究[J]. 材料科学与工艺, 2007(3): 374-378.[24] Xu Yongxiang, Xu Jun, Guo Baohua, et al. Crystallization kinetics and morphology of biodegradable poly(butylene succinate-co-propylene succinate)s[J]. Journal of Polymer Science (Part B): Polymer Physics, 2007, 45(4): 420-428.

备注/Memo

备注/Memo:
甘肃省重点研发计划项目(20 YF 3 FA 003)。
更新日期/Last Update: 2022-11-15