|本期目录/Table of Contents|

[1]李远坤,姜 宁?鄢,李孟迪,等.轮胎材料在典型环境下老化性能研究进展[J].合成橡胶工业,2022,5:430-436.
 LI Yuan-kun,JIANG Ning,LI Meng-di,et al.Research progress on aging properties of tire materials under typical environment[J].China synthetic rubber industy,2022,5:430-436.
点击复制

轮胎材料在典型环境下老化性能研究进展(PDF)

《合成橡胶工业》[ISSN:1000-1255/CN:62-1036/TQ]

期数:
2022年5期
页码:
430-436
栏目:
出版日期:
2022-09-15

文章信息/Info

Title:
Research progress on aging properties of tire materials under typical environment
文章编号:
1000-1255(2022)05-0430-07
作者:
李远坤1姜 宁12?鄢李孟迪1张 儒1李 宁2葛文庆1李 迪1
1. 山东理工大学 交通与车辆工程学院, 山东 淄博 255000; 2. 三角轮胎股份有限公司 三角集团研发中心, 山东 威海 264200
Author(s):
LI Yuan-kun1 JIANG Ning12 LI Meng-di1 ZHANG Ru1 LI Ning2 GE Wen-qing1 LI Di1
1. School of Transportation and Vehicle Engineering, Shandong University of Technology, Zibo 255000, China; 2. Triangle Tyre Co Ltd, Triangle Group R & D Center, Weihai 264200, China
关键词:
轮胎典型环境老化性能防老化措施安全性综述
Keywords:
tire typical environment aging property anti-aging measure safety review
分类号:
TQ 336.1
DOI:
DOI:10.19908/j.cnki.ISSN1000-1255.2022.05.0430
文献标识码:
A
摘要:
对实验室轮胎的老化方法及轮胎橡胶材料在典型环境下的失效进行了总结,并综述了轮胎橡胶在热氧、湿热和臭氧环境下的老化行为、老化机理及防老化措施,展望了轮胎抗老化性能研究的发展趋势。
Abstract:
The laboratory tire aging methods and the failure research of tire rubber materials under typical environment were summarized, and the aging behavior and aging mechanism of tire rubber under hot oxygen, humid heat and ozone environment, and anti-aging measures were reviewed with 95 references. And the future development trends of tire aging resistance were prospected.

参考文献/References

[1] 范丽雄. 橡胶的老化现象及其老化机理[J]. 新材料与新技术, 2018, 8(44): 54-55.[2] MacIsaac J J D, Feve S. NHTSA tire aging test deve-lopment project: Phoenix, arizona tire study[C]//The 20th proceedings of the international conference on the enhanced safety of vehicles. Lyon:National Highway Traffic Safety Administration,2007:496-502.[3] Baldwin J M, Bauer D R, Hurley P D. Field aging of tires [J]. Rubber Chemistry & Technology,2005,78(5):754-766.[4] 苏博,张浩成. 国内外轮胎整胎老化测试研究[J]. 橡塑技术与装备,2017,43(5):6.[5] 贺年茹,李红伟,孙炳光,等. 美国公路交通安全管理局轮胎老化研究报告(一)[J]. 中国橡胶,2015,31(11):8-12.[6] 贺年茹,李红伟,孙炳光,等. 美国公路交通安全管理局轮胎老化研究报告(二)[J]. 中国橡胶,2015,31(12):20-21.[7] Bauer D R, Baldwin J M, Ellwood K R. Rubber aging in tires(Part II): Accelerated oven aging tests[J]. Polymer Degradation and Stability,2007,92(1):110-117.[8] Deng Huang, La Count B J, Castro J M, et al. Deve-lopment of a service-simulating, accelerated aging test method for exterior tire rubber compounds (I): Cyclic aging [J]. Polymer Degradation and Stability,2001,71: 353-362.[9] Baldwin J M, Bauer D R, Ellwood K R. Accelerated aging of tires [J]. Rubber Chemistry and Technology, 2005,78(5):767-776.[10] La Count B J, Castro J M, Frederick I H. Development of a service-simulating, accelerated aging test method for exterior tire rubber compounds (II): Design and development of an accelerated out door aging simulator [J]. Polymer Degradation and Stability,2002,75(2):213-227.[11] 路金英,梁秋珍. 胎侧产生龟裂的原因分析及解决措施[J]. 橡胶工业,1993,40(10):29-31.[12] 孙波. 全钢载重子午线轮胎胎侧胶硫化体系的研究[J]. 轮胎工业,2020,40(10):600-603.[13] Waddell W H. 沉淀法白炭黑对黑胎侧胶料性能的改进[J]. 轮胎工业,1994,14(5): 0-14.[14] 蒲启君. 骨架材料与橡胶的粘合技术及其新进展[J]. 橡胶工业,2005,50(3):175-179. [15] 任晓静,李国瑞,梁千顷,等. 全钢载重子午线轮胎花纹沟底裂口的原因分析及解决措施[J]. 轮胎工业,2021,41(5): 323-326.[16] 王昊,危银涛,王静. 橡胶材料疲劳寿命影响因素及研究方法综述[J]. 橡胶工业,2020,67(10):723-735. [17] 刘云鹏,周涛,杨晓光. 有限元分析在轮胎结构设计中的应用[J]. 轮胎工业,2019,39(5): 263-267.[18] 梁晨,王国林,伍建军,等. 载重子午线轮胎接地几何特征研究[J]. 拖拉机与农用运输车,2010,37(1):55-56.[19] Gent A N, Razzaghi-Kashani M, Hamed G R. Why do cracks turn sideways?[J]. Rubber Chemistry & Technology,2003,76(1):122-131. [20] Baldwin J M, Bauer D R. Rubber oxidation and tire aging: A review [J]. Rubber Chemistry & Technology, 2008,81(2):338-358.[21] Baldwin J M, Bauer D R, Ellwood K R. Accelerated aging of tires [J]. Rubber Chemistry & Technology, 2005,78(2):336-353.[22] 邢程,余本祎,蔡莹莹. 轮胎老化耐久性能的研究[J]. 橡胶科技,2019,17(3):146-150.[23] 张又文,马良清,李红伟,等. 老化对轮胎及轮胎材料性能的影响[J]. 橡胶工业,2018,65:548-551.[24] 贺玉函,张雨昕,张震,等. 轮胎橡胶的热氧老化降解研究进展[J]. 合成材料老化与应用,2020,49(6): 126-134.[25] Baldwin J M, Bauer D R, Ellwood K R. Rubber aging in tires(Part 1): Field results [J]. Polymer Degradation and Stability, 2007,92:103-109.[26] 金林赫. 天然橡胶分子链支链及端基的分析[D]. 海口:海南大学,2017.[27] Bolland J L. Kinetic studies in the chemistry of rubber and related materials (I): The thermal oxidation of ethyl linoleate [J]. Transactions of the Faraday Society,1946,186(1005): 218 -236.[28] Zhao Jiaohong, Yang Rui, Iervolino R, et al. Changes of chemical structure and mechanical property levels during thermo-oxidative aging of NBR [J]. Rubber Chemistry & Technology,2013,86(4):591-603.[29] 齐藤孝臣,张琪. 各种橡胶的老化机理[J]. 橡胶参考资料,1996,26(6):9-20[30] 卜少华. 异戊橡胶的老化与防老化研究[D]. 北京:北京化工大学,2012.[31] 杨小田,张博,康建铭,等. 橡胶老化及其防护技术的研究概况[J]. 化工管理,2020(7):100-101.[32] Zhao Jiaohong, Yang Rui, Iervolino R, et al. The effect of thermo-oxidation on the continuous stress relaxation behavior of nitrile rubber [J]. Polymer Degradation and Stability,2015,115(5):32-37.[33] 谢艳玲,宋攀,徐彬彬,等. 不饱和橡胶的热氧老化研究进展[J]. 合成橡胶工业,2019,42(1):71-78.[34] 周益扬. 高低温循环及湿热对硅橡胶材料性能影响研究[D]. 北京:华北电力大学,2015.[35] 刘璇,杨睿. 橡胶密封材料老化研究进展[J]. 机械工程材料,2020,44(9):1-11.[36] 李彦. 热氧老化对炭黑填充橡胶拉伸力学性能的影响[D]. 湘潭:湘潭大学,2015.[37] 郑静,向科炜. 黄光速红外光谱研究丁基橡胶老化机理及寿命预测[J]. 宇航材料工艺,2013,43(1):89-92.[38] 周省委. 橡胶磨耗及表面形貌的研究[J]. 云南化工,2019,46(9):71-74.[39] 梁梨花,钟建永,丁玲,等. 顺丁橡胶的热氧老化及其机理[J]. 高分子材料科学与工程,2019,35(2):107-120.[40] Choi S S. Characteristics of the pyrolysis patterns of styrene-butadiene rubbers with differing microstructures [J]. Journal of Analytical and Applied Pyrolysis,2002,62(2):319-330.[41] Jitkarnka S, Chusaksri B, Supaphol P, et al. Influences of thermal aging on properties and pyrolysis products of tire tread compound [J]. Journal of Analytical and Applied Pyrolysis,2007,80(1):269-276.[42] 李利,王瑞,党栋,等. 轮胎骨架材料带束层的有限元分析[J]. 弹性体,2014,24(4):19-23.[43] 郑爱隔,马明强,李琦,等. 疲劳温度对橡胶与钢丝帘线动态粘合性能的影响[J]. 弹性体,2014,24(1):15-18.[44] 张广泰,陆东亮,魏飞来,等. 热氧老化作用下废旧叠层轮胎隔震垫的力学性能[J]. 华南理工大学学报(自然科学版),2019,47(8):16-22.[45] 张广泰,曹银龙,陆东亮,等. 热氧老化下废旧轮胎隔震垫隔震性能及压应力相关性研究[J]. 材料导报,2020,34(24): 24170-24177.[46] 陈经盛. 橡胶湿热老化试验的研究[J]. 老化与应用,1994(1):1-7.[47] Real L P, Gardette. Artificial simulated and natural weathering of poly (vinyl chloride) for outdoor applications: The influence of water in the changes of properties[J]. Polymer Degradation and Stability,2005,88:357-362.[48] Hardcastle H K, Meeks W L. Considerations for cha-racterizing moisture effects in coatings weathering stu-dies [J]. J Coat Technol Res,2008,5(2):181-192.[49] 张晓军,常新龙,张世英,等. 氟橡胶密封材料的湿热老化机制[J]. 润滑与密封,2013,38(5):38-41.[50] 张心宇,刘小青. 填料对硫化天然胶湿热老化性能的影响研究[J]. 绿色科技,2017,18:198-199.[51] Nguyen T, Martin J, Byrd E. Relating laboratory and out-door exposure of coatings(IV): Mode and mechanism for hydrolytic degradation of acrylic-melamine coatings exposed to water vapor in the absence of UV light [J]. Journal of Coatings Technology,2003,75(941):37-50.[52] 蒋莎莎. 硅橡胶加速老化及失效机理研究[D]. 哈尔滨:哈尔滨工业大学,2013.[53] Zhang Zhen, Zhang Yuxin, Li Jiayi, et al. Accelerated liquefaction of vulcanized natural rubber by thermo-oxidative degradation[J]. Polymer Bulletin,2022,79(3):1767-1786.[54] 吴磊,朱诗顺. 基于特征峰拟合法的轮胎老化定量研究[J]. 橡胶工业,2017,64(8):498-502.[55] 田瑶君,秦军,熊玉竹,等. PE 100材料的湿热老化性能及其寿命预测[J]. 塑料,2015,44(6): 9-11.[56] Larché J F, Bussière P O, Gardette J L. Characterisation of accelerated ageing devices for prediction of the service life of acrylic-melamine/urethane thermosets[J]. Polymer Degradation and Stability,2011,96(8): 1530-1536.[57] Colombini D, Martinez-Vega J J, Merle G. Dynamic mechanical investigations of the effects of water sorption and physical ageing on an epoxy resin system[J]. Polymer,2002,43(16): 4479-4485.[58] 沈尔明,李晓欣,王志宏,等. 长期储存后橡胶材料湿热老化分析[J]. 材料工程,2013(7):87-91.[59] Ozawaa K, Kakubob T. High-resolution photoelectron spectroscopy study of degradation of rubber-to-brass adhesion by thermal aging [J]. Applied Surface Science,2013,268(3):117-123.[60] 李利,肖培光,刘潇冬. 热老化和湿气老化对橡胶/钢丝帘线粘合性能的影响[J]. 特种橡胶制品,2016,37(5): 22-26.[61] 王亮,陈双俊,张军,等. 湿热老化对锰锌铁氧体/硅橡胶复合材料性能的影响[J]. 橡胶工业,2010,57(5): 275-281.[62] Vinod V S, Siby V. Degradation behaviour of natural rubber-aluminium powder composites: Effect of heat, ozone and high energy radiation[J]. Polymer Degradation and Stability,2002,75(3):405-412.[63] 王作龄. 防老剂应用技术[J]. 世界橡胶工业,2001,28(1): 55-59.[64] 吴磊,朱诗顺. 基于特征峰拟合法的轮胎老化定量研究[J]. 橡胶工业,2017,64(8):498-502.[65] 王思静,熊金平,左禹. 橡胶老化机理与研究方法进展[J]. 合成材料老化与应用,2009,38(2):23-33.[66] 李玲丽,郑刚. 天然橡胶耐臭氧性能研究[J]. 中国橡胶应用技术,2019,35(6): 46-49.[67] Middleton J, Burks B, Wells T, et al. The effect of ozone on polymer degradation in polymer core Composite conductors[J]. Polymer Degradation and Stability,2013,98(1): 436-445.[68] 王兵兵,黄桂春,陈永平,等. 不同生产工艺对天然橡胶臭氧老化性能与结构的影响[J]. 热带作物学报,2015,36(7):1342-1347.[69] Taksapattanakul K, Tulyapitak T, Phinyocheep P, et al. The effect of percent hydrogenation and vulcanization system on ozone stability of hydrogenated natural rubber vulcanizates using Raman spectroscopy [J]. Polymer Degradation and Stability,2017,141:58-68. [70] 那洪东. 预防弹性体制品老化和损坏的措施[J]. 世界橡胶工业,2009,36(2):41-48.[71] 高天奇,王兆波. 轿车轮胎耐臭氧老化性能研究[J]. 青岛科技大学学报(自然科学版),2018,39(S 1): 88-91.[72] 孙艳妮,何宁,孙钦军,等. 轮胎动态臭氧老化性能的研究[J]. 青岛科技大学学报(自然科学版),2019, 40(4):92-97.[73] 姬燕飞,赵伟松. 橡胶的老化与防护[J]. 橡塑资源利用,2016(4):25-29.[74] 符尧. 橡胶的疲劳老化与防护[J]. 特种橡胶制品,2019,40(4): 63-68.[75] 黄鹄,崔洪明,何峰. 橡胶防护蜡的生产优化及性能评价[J]. 润滑油,2020,35(2):54-57.[76] 张晓芳,王玲玲,邓涛. 不同温度下橡胶防护蜡抗臭氧老化性能的研究[J]. 特种橡胶制品,2015,36(6): 41-45.[77] 李永清,晏欣,郑淑贞. 硫化橡胶防老化涂层的研制[J]. 合成材料老化与应用,2004(4):31-35.[78] 余本祎,邢程,蔡莹莹. 提高轻型载重子午线轮胎老化耐久性能的结构优化设计[J]. 轮胎工业,2020,40(10): 588-592.[79] 张晓旭. 丁腈橡胶老化与防护的探究[J]. 辽宁化工,2018,47(10):1013-1016.[80] Ahmed F S, Shafy M, Abd E A A, et al. The effect of γ-irradiation on acrylonitrile-butadiene rubber NBR seal materials with different antioxidants[J]. Materials & Design,2012,36:823-828.[81] 赵建勇,岳红,陈兵勇,等. 氢化丁腈橡胶耐热老化性能的研究[J]. 粘接,2013,34(10):48-51.[82] 舒本勤. 高耐压高硬度橡胶材料的研究[D]. 武汉:武汉理工大学,2009.[83] 王才朋,马德龙,杨振林,等. 防护体系对轮胎胎侧胶耐老化性能的影响[J]. 橡胶科技,2019,17(2):92-95.[84] 丛明辉,吕丹丹,林科,等. 硫化温度及硫化程度对全钢载重子午线轮胎胎面胶性能的影响[J]. 轮胎工业,2020,40(10): 618-621.[85] 杨艳平,姬新生. 硫化体系对全钢载重子午线轮胎钢丝粘合胶性能的影响[J]. 轮胎工业,2008(5): 282-285.[86] Rattanasom N, Poonsuk A, Makmoon T. Effect of cu-ring system on the mechanical properties and heat aging resistance of natural rubber/tire tread reclaimed rubber blends [J]. Polymer Testing,2005,24(6):728-732.[87] 李鹏,于志勇,吕丹丹,等. 多功能橡胶硫化活性剂ZH-73对全钢载重子午线轮胎胎面胶性能的影响[J]. 橡胶科技,2020,18(3):146-149.[88] 任夫云,张世鑫,孙宝余,等. 不同结构顺丁橡胶在载重子午线轮胎胎侧胶中的应用[J]. 轮胎工业,2020,40(11): 663-665.[89] 蒋洪罡,栗付平,王力,等. 天然橡胶与合成聚异戊二烯的并用研究[J]. 特种橡胶制品,2008(5):20-23.[90] 徐晓鹏,张炫辉,朱大为. 环氧化天然橡胶在全钢子午线轮胎带束层中的应用研究[J]. 轮胎工业, 2018,38(4):217-220.[91] 姚利丽,刘湘慧,倪自飞,等. 氯化天然橡胶对子午线轮胎胎圈胶性能的影响[J]. 轮胎工业,2017,37(5):289-292.[92] 曾国镇. 胎圈钢丝表面涂层液的研究[J]. 金属制品,2009,35(3):14-19.[93] 李利,罗高翔,霍石磊,等. 促进剂种类对橡胶-钢丝粘合和胶料性能的影响[J]. 橡胶工业,2021,68(2):104-108.[94] 刘磊,杨艳平,樊斌斌,等. 粘合抗氧剂BW-60在全钢载重子午线轮胎胎体中的应用[J]. 轮胎工业, 2016, 36(11): 676-678.[95] 宋维浩,吕德军,王晶晶,等. 炭黑对天然橡胶钢丝复合体性能的影响[J]. 弹性体,2020,30(4):33-36.

备注/Memo

备注/Memo:
山东省自然科学基金资助项目(ZR 2020 QA 040)。
更新日期/Last Update: 2022-09-15