|本期目录/Table of Contents|

[1]李雪雨,温彦威,陆少杰,等.导电橡胶复合材料研究进展[J].合成橡胶工业,2022,4:331-335.
 LI Xue-yu,WEN Yan-wei,LU Shao-jie,et al.Progress in conductive rubber composite materials[J].China synthetic rubber industy,2022,4:331-335.
点击复制

导电橡胶复合材料研究进展(PDF)

《合成橡胶工业》[ISSN:1000-1255/CN:62-1036/TQ]

期数:
2022年4期
页码:
331-335
栏目:
出版日期:
2022-07-15

文章信息/Info

Title:
Progress in conductive rubber composite materials
文章编号:
1000-1255(2022)04-0331-05
作者:
李雪雨1温彦威2陆少杰1贾红兵1
1. 南京理工大学 软化学与功能材料教育部重点实验室, 南京 210094; 2. 上海航天化工应用研究所, 浙江 湖州 313000
Author(s):
LI Xue-yu WEN Yan-wei LU Shao-jie JIA Hong-bing
1. Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China; 2. Shanghai Aerospace Chemical Application Research Institute, Huzhou 313000, China
关键词:
导电填料导电橡胶复合材料综述
Keywords:
conductive filler conductive rubber composite review
分类号:
TQ 333
DOI:
DOI:10.19908/j.cnki.ISSN1000-1255.2022.04.0331
文献标识码:
A
摘要:
综述了国内外有关导电填料品种和导电橡胶复合材料制备方法及应用的研究新进展,指明导电填料的并用及制备新方法赋予了导电橡胶复合材料更优异的性能,拓展了导电橡胶的功能化和多元化。
Abstract:
The new research progress in varieties of conductive fillers, preparation methods and applications of conductive rubber composites at home and abroad were summarized with 41 references. The combination of conductive fillers and new preparation methods endowing conductive rubber composites with better properties to expand its functionalization and diversification were point out.

参考文献/References

[1] Ning Nanying, Miao Chunmeng, Zou Hua, et al. A new insight on the variation of the electric conductivity and conductive network of silver-coated glass particles/silicone elastomer compo-sites under tensile strain [J]. Composites Science & Technology, 2016, 136: 46-52.[2] Chen Yang, Wang Ling, Wu Zefeng, et al. Super-hydrophobic, durable and cost-effective carbon black/rubber composites for high performance strain sensors [J]. Composites, 2019, 176: 107358.[3] Yang Jianming, Liao Xia, Li Junsong, et al. Light-weight and flexible silicone rubber/MWCNTs/Fe3O4 nanocomposite foams for efficient electromagnetic interference shielding and microwave absorption [J]. Composites Science and Technology, 2019, 181: 107670.[4] Wang Xinghuo, Xu Chuanhui, Shen Qi, et al. Conductivity controllable rubber films: Response to humidity based on a bio-based continuous segregated cell network [J]. Journal of Mate-rials Chemistry (A), 2021, 9(13): 8749-8760.[5] Ma Shufei, Zhu Shuli, Liu Maolin, et al. A high-performance, thermal and electrical conductive elastomer composite based on Ti3C2 MXene [J]. Composites (Part A): Applied Science and Manufacturing, 2021, 145(5): 106292.[6] Nguyen T H, Nguyen V, Ougizawa T, et al. Electromagnetic shielding material based on hydrogenated natural rubber/expanded graphite blend: Preparation and characterization [J]. Polymers for Advanced Technologies, 2021, 32(8): 3008-3017.[7] Xiong Jianxiang, Gong Zhou, Ding Jianping, et al. A conductive rubber with self-healing ability enabled by metal-ligand coordination [J]. Polymers for Advanced Technologies, 2021, 32(6): 2531-2540.[8] Sun Daoxing, Wei Yanyan. Study of the conductive paths of carbon-black-filled polyethylene composites by the alternating-current impedance method [J]. Journal of Applied Polymer Science, 2008, 108(6): 3748-3752.[9] Wen Ming, Sun Xiaojie, Su Lin, et al. The electrical conductivity of carbon nanotube/carbon black/polypropylene composites prepared through multistage stretching extrusion [J]. Polymer, 2012, 53(7): 1602-1610.[10] Hilden L R, Morris K R. Physics of amorphous solids[J]. Journal of Pharmaceutical Sciences, 2004, 93(1): 3-12.[11] Ghosh P, Chakrabarti A. Conducting carbon black filled EDPM vulcanizates: Assessment of dependence of physical and mechanical properties and conducting character on variation of filler loading [J]. European Polymer Journal, 2000, 36(5): 1043-1054.[12] Al-Saleh M H, Sundararaj U. A review of vapor grown carbon nanofiber/polymer conductive composites [J]. Carbon, 2009, 47(1): 2-22.[13] Jiang Meijuan, Dang Zhiming, Xu Haiping. Enhanced electrical conductivity in chemically modified carbon nanotube/methylvinyl silicone rubber nanocomposite [J]. European Polymer Journal, 2007, 43(12): 4924-4930.[14] Xing Wang, Tang Maozhu, Wu Jinrong, et al. Multifunctional properties of graphene/rubber nanocomposites fabricated by a modified latex compounding method [J]. Composites Science and Technology, 2014, 99: 67-74.[15] Dong Bin, Zhang Liqun, Wu Youping. Highly conductive natural rubber-graphene hybrid films prepared by solution casting and in situ reduction for solvent-sensing application [J]. Journal of Materials Science, 2016, 51(23): 10561-10573.[16] Gao Hanyang, Liu Haijun, Song Chengzhi, et al. Infusion of graphene in natural rubber matrix to prepare conductive rubber by ultrasound-assisted supercritical CO2 method [J]. Chemical Engineering Journal, 2019, 368: 1013-1021.[17] Sun Xinying, Liu Xu, Shen Xi, et al. Graphene foam/carbon nanotube/poly(dimethyl siloxane) composites for exceptional microwave shielding [J]. Composites (Part A): Applied Science and Manufacturing, 2016, 85: 199-206.[18] Tian Zhilin, Zhao Yu, Wang Shaogang, et al. A highly stret-chable and conductive composite based on an emulsion-templa-ted silver nanowire aerogel [J]. Journal of Materials Chemistry (A), 2020, 8(4): 1724-1730.[19] Li Yecan, Li Chaoqin, Zhao Shuai, et al. Facile fabrication of highly conductive and robust three-dimensional graphene/silver nanowires bicontinuous skeletons for electromagnetic interfe-rence shielding silicone rubber nanocomposites [J]. Composites (Part A): Applied Science and Manufacturing, 2019, 119: 101-110.[20] Li Cailiang, Yang Zhijun, Tang Zhenghai, et al. A scalable strategy for constructing three-dimensional segregated graphene network in polymer via hydrothermal self-assembly [J]. Chemical Engineering Journal, 2019, 363: 300-308.[21] 李杨, 李德明, 杨茗皓. 碳材料/橡胶导电复合材料的研究进展 [J]. 橡胶科技, 2019, 17(7): 365-371.[22] Liu Zijin, Qian Zhenghua, Song Jianan, et al. Conducting and stretchable composites using sandwiched graphene-carbon na-notube hybrids and styrene-butadiene rubber [J]. Carbon, 2019, 149: 181-189.[23] 宁南英, 刘苏亭, 赵柔, 等. 高弹性高导电稳定性炭黑/碳管/硅橡胶复合材料的设计与制备[J]. 科学通报, 2018, 63(34): 3677-3686.[24] 张玉刚, 黄英, 刘彩霞, 等. 人工皮肤用碳纳米管/硅胶压敏材料研究[J]. 华中科技大学学报(自然科学版), 2011, 39(S 2): 306-308.[25] Jia Lichuan, Yan Dingxiang, Yang Yingchao, et al. High strain tyolerant EMI shielding using carbon nanotube network stabilized rubber composite [J]. Advanced Materials Technologies, 2017, 2(7): 1700078.[26] Kim J S, Yun J H, Kim I, et al. Electrical properties of graphene/SBR nanocomposite prepared by latex heterocoagulation process at room temperature [J]. Journal of Industrial and Engineering Chemistry, 2011, 17(2): 325-330.[27] Samad Y A, Li Y, Alhassan S M, et al. Novel graphene foam composite with adjustable densitivity for densor applications [J]. ACS Applied Materials & Interfaces, 2015, 7(17): 9195-9202.[28] Oh Jae Young, Lee Dongju, Jun Gwang Hoon, et al. High conductivity and stretchability of 3 D welded silver nanowire filled graphene aerogel hybrid nanocomposites [J]. Journal of Materials Chemistry (C), 2017, 5(32): 8211-8218. [29] Lee J, Woo J Y, Kim J T, et al. Synergistically enhanced stabi-lity of highly flexible silver nanowire/carbon nanotube hybrid transparent electrodes by plasmonic welding [J]. ACS Applied Materials & Interfaces, 2014, 6(14): 10974-10980.[30] Won J, Mondal S, Park J, et al. Highly stretchable wrinkled electrode based on silver ink-elastomer nanocomposite with excellent fatigue resistance [J]. Polymer Composites, 2020, 41(6): 2210-2223.[31] Xu Peijun, Zhang Ru, Zhang Ning, et al. Marangoni interface self-assembly hybrid carbon nano-network for transparent conductive silicone rubber [J]. Progress in Organic Coatings, 2019, 129: 26-31.[32] Song Quancheng, Chen Binxia, Zhou Zehang, et al. Flexible, stretchable and magnetic Fe3O4 @ Ti3C2 Tx/elastomer with supramolecular interfacial crosslinking for enhancing mechanical and electromagnetic interference shielding performance [J]. Science China Materials, 2021, 64(6): 1437-1448.[33] Li Jingchao, Zhao Xiuying, Wu Wenjie, et al. Bubble-templa-ted rGO-graphene nanoplatelet foams encapsulated in silicon rubber for electromagnetic interference shielding and high thermal conductivity [J]. Chemical Engineering Journal,2021,415: 129054.[34] Yang Jianming, Liao Xia, Wang Gui, et al. Heterogeneous silicon rubber composite foam with gradient porous structure for highly absorbed ultra-efficient electromagnetic interference shielding [J]. Composites Science and Technology, 2021, 206: 108663.[35] Zhang Jihua, Zhang Hui, Wang Hao, et al. Extruded conductive silicone rubber with high compression recovery and good aging-resistance for electromagnetic shielding applications [J]. Polymer Composites, 2019, 40(3): 1078-1086.[36] Sheng An, Yang Yaqi, Ren Wei, et al. Ground tire rubber composites with hybrid conductive network for efficiency electromagnetic shielding and low reflection [J]. Journal of Materials Science: Materials in Electronics, 2019, 30(15): 14669-14678.[37] Yang Heng, Yao Xuefeng, Zheng Zhong, et al. Highly sensitive and stretchable graphene-silicone rubber composites for strain sensing [J]. Composites Science and Technology, 2018, 167: 371-378.[38] Li Xingsheng, Wang Yumeng, Hou Yue, et al. Graphene nanosheet/Cu nanowire composite aerogel with a thin PDMS coating for electrically conductive pressure sensing rubber [J]. Composites (Part A): Applied Science and Manufacturing, 2021, 140: 106192.[39] Zhang Qiang, Pan Shirui, Ji Chao, et al. A shapeable, ultra-stretchable rubber strain sensor based on carbon nanotubes and Ag flakes via melt-mixing process [J]. Journal of Materials Chemistry (B), 2021, 9(16): 3502-3508.[40] Lv Zhen, Huang Xin, Fan Dongyang, et al. Scalable manufacturing of conductive rubber nanocomposites with ultralow percolation threshold for strain sensing applications [J]. Composites Communications, 2021, 25: 100685.[41] Zhang Jihua, Liu Xiaoyan, Feng Huadong, et al. Conductive, sensing stable and mechanical robust silicone rubber composites for large-strain sensors [J]. Polymer Composites, 2021, 42(12): 6394-6402.

备注/Memo

备注/Memo:
中国航空科学基金资助项目(2016 ZF 59009)
更新日期/Last Update: 2022-07-15