|本期目录/Table of Contents|

[1]魏利萍,沈梅,辛振祥.不同种类低共熔溶剂对白炭黑填充丁苯橡胶物理机械性能的影响[J].合成橡胶工业,2022,3:188-194.
 WEI Li-ping,SHEN Mei,XIN Zhen-xiang.Effect of different types of deep eutectic solvent on physical and mechanical properties of styrene-butadiene rubber filled with silica[J].China synthetic rubber industy,2022,3:188-194.
点击复制

不同种类低共熔溶剂对白炭黑填充丁苯橡胶物理机械性能的影响(PDF)

《合成橡胶工业》[ISSN:1000-1255/CN:62-1036/TQ]

期数:
2022年3期
页码:
188-194
栏目:
出版日期:
2022-05-15

文章信息/Info

Title:
Effect of different types of deep eutectic solvent on physical and mechanical properties of styrene-butadiene rubber filled with silica
文章编号:
1000-1255(2022)03-0188-07
作者:
魏利萍沈梅辛振祥
青岛科技大学 橡塑材料与工程教育部重点实验室, 山东 青岛 266042
Author(s):
WEI Li-ping SHEN Mei XIN Zhen-xiang
Key Laboratory of Rubber-Plastics of Ministry of Education, Qingdao University of Science and Technology, Qingdao 266042, China
关键词:
低共熔溶剂白炭黑协同作用分散性物理机械性能耐磨性能Payne效应界面结合
Keywords:
deep eutectic solvent silica synergistic effect dispersity physical and mechanical property wear resistance Payne effect interface adhesion
分类号:
TQ 333.1
DOI:
DOI:10.19908/j.cnki.ISSN1000-1255.2022.03.0188
文献标识码:
B
摘要:
以低共熔溶剂(DES)为白炭黑的改性剂,通过与双[3-(三乙氧基硅)丙基]四硫化物(TESPT)并用进行原位反应改善白炭黑在丁苯橡胶中的分散性,研究了不同种类DES对白炭黑/丁苯橡胶复合材料硫化特性、加工性能、物理机械性能和微观形貌的影响。结果表明,氯化胆碱/尿素与TESPT并用可以明显改善白炭黑在丁苯橡胶中的分散性,使Payne效应减弱,并提升白炭黑/丁苯橡胶硫化胶的力学性能和压缩疲劳性能;氯化胆碱/乙二酸与TESPT并用对提高白炭黑与丁苯橡胶界面结合力效果显著,所得白炭黑/丁苯橡胶复合材料的耐磨性能优异;而当DES用量较大时改性效果不佳。
Abstract:
With deep eutectic solvent (DES) as the modifier of silica, the dispersity of silica in styrene butadiene rubber (SBR) was improved by in-situ reaction under the synergistic effect of DES and bis(3-triethoxysilyl-propyl)-tetrasulfide (TESPT). The effects of different types of DES on curing characte-ristics, processing properties, physico-mechanical properties, and micromorphology of SBR/silica composites were researched. The results showed that choline chloride/urea in combination with TESPT could significantly improve the dispersity of silica in SBR matrix and weaken the Payne effect, so the mechanical properties and compression fatigue property of SBR/silica vulcanizates increased. Meanwhile, choline chloride/oxalic acid in combination with TESPT showed outstanding performance in impro-ving the interface adhesion between silica and SBR resulting in excellent wear resistance of SBR/silica composites. However, when the amount of DES was overdosed, the modification effect became worse.

参考文献/References

[1] Tang Zhenghai, Huang Jing, Wu Xiaohui, et al. Interface engineering toward promoting silanization by ionic liquid for high-performance rubber/silica composites[J]. Industrial & Enginee-ring Chemistry Research, 2015, 54(43): 10747-10756.[2] Zhong Bangchao, Zeng Xueqi, Chen Wanjuan, et al. Nonsol-vent- assisted surface modification of silica by silane and antioxidant for rubber reinforcement[J]. Polymer Testing, 2019, 78: 105949-105957.[3] Lee Jong-yeop, Lee Taeheon, Kim Kihyun, et al. Poly(styrene-r-butadiene)-b-poly(poly(ethylene glycol) methyl ether methacrylate) as a silica dispersant in rubber compounds[J]. Polymer International, 2014, 63(5): 908-914.[4] Shanmugharaj A M, Bhowmick A K. Dynamic mechanical pro-perties of styrene-butadiene rubber vulcanizate filled with electron beam modified surface-treated dual-phase filler[J]. Journal of Applied Polymer Science, 2003, 88(13): 2992-3004.[5] Xiao Yake, Zou Hua, Zhang Liqun, et al. Surface modification of silica nanoparticles by a polyoxyethylene sorbitan and silane coupling agent to prepare high-performance rubber composites[J]. Polymer Testing, 2020, 81: 106195-160204.[6] 王彦, 夏琳, 辛振祥, 等. 环氧化杜仲橡胶的制备及其在丁苯橡胶/白炭黑复合材料中的应用[J]. 合成橡胶工业, 2019, 42(3): 16-21.[7] Zhang Xinping, Cai Lei, He Aihua, et al. Facile strategies for green tire tread with enhanced filler-matrix interfacial interactions and dynamic mechanical properties[J]. Composites Science and Technology, 2021, 203: 108601-108608.[8] Qian Zhenghua, Peng Zonglin. Reinforcing styrene-butadiene rubber composites by constructing multiple interaction between rubber and silica[J]. Polymer Composites, 2018, 40(5): 1740-1747.[9] Zhang Qianhua, de Oliveira Vigier K, Royer S, et al. Deep eutectic solvents: Syntheses, properties and applications[J]. Chemical Society Reviews, 2012, 41(21): 7108-7146.[10] 韦露, 樊友军. 低共熔溶剂及其应用研究进展[J]. 化学通报, 2011, 74(4): 333-339.[11] 曾朝喜. 天然低共熔溶剂理化性质及其在脂肪酶催化转化应用中的研究[D]. 广州: 华南理工大学, 2016.[12] Wei Liping, Shen Mei, Xin Zhenxiang. A novel material based on deep eutectic solvents and its application in in-situ modifiedsi lica-reinforced styrene-butadiene rubber[J]. Journal of Applied Polymer Science, 2022, 139(18): 52089.[13] 杨清芝. 实用橡胶工艺学[M]. 北京: 化学工业出版社, 2011: 52-56.[14] Sae-Oui P, Sirisinha C, Hatthapanit K. Properties of natural rubber filled with ultra fine acrylate rubber powder[J]. Journal of Elastomers and Plastics, 2010, 42(2):139-150.[15] Pattanawanidchai S, Sae-Oui P, Sirisinha C, et al. Cure retardation of peroxide-cured silica filled natural rubber influenced by organosilane[J]. Polymer Engineering and Science, 2019, 51(1): 42-48.[16] Zhang Z C. Catalysis in ionic liquids[J]. Advances in Catalysis, 2006, 49: 153-237.

备注/Memo

备注/Memo:
山东省重大科技创新工程项目(2019 JZZY 020223)。
更新日期/Last Update: 2022-05-15