|本期目录/Table of Contents|

[1]王林艳,梁玉蓉,张一铎,等.用静态热压法制备高气体阻隔性有机黏土/天然橡胶复合材料[J].合成橡胶工业,2025,02:118-122.
 WANG Lin-yan,LIANG Yu-rong,ZHANG Yi-duo,et al.Preparation of high gas barrier organic clay/natural rubber composites by static hot pressing method[J].China synthetic rubber industy,2025,02:118-122.
点击复制

用静态热压法制备高气体阻隔性有机黏土/天然橡胶复合材料(PDF)

《合成橡胶工业》[ISSN:1000-1255/CN:10-2023/TQ]

期数:
2025年02
页码:
118-122
栏目:
出版日期:
2025-03-15

文章信息/Info

Title:
Preparation of high gas barrier organic clay/natural rubber composites by static hot pressing method
文章编号:
1000-1255(2025)02-0118-05
作者:
王林艳梁玉蓉张一铎刘钰溪
太原工业学院 材料工程系,太原 030008
Author(s):
WANG Lin-yan LIANG Yu-rong ZHANG Yi-duo LIU Yu-xi
Department of Materials Engineering, Taiyuan Institute of Technology , Taiyuan 030008, China
关键词:
有机黏土天然橡胶静态热压法硫化特性力学性能气体阻隔性能微观结构微观形貌
Keywords:
organic clay natural rubber static hot pressing methodcuring characteristics mecha-nical property gas barrier property microstructure micromorphology
分类号:
TQ 332.5
DOI:
DOI:10.19908/j.cnki.ISSN1000-1255.2025.02.0118
文献标识码:
A
摘要:
采用静态热压法制备了有机黏土(OC)/天然橡胶(NR)复合材料,表征了复合材料的微观结构与微观形貌,考察了OC用量对复合材料的硫化特性、力学性能和气体阻隔性能的影响。结果表明,将OC填充进NR后,OC/NR复合材料的交联密度增大,但OC片层会阻隔橡胶基体与硫化助剂发生反应,使硫化助剂不能迅速参与交联反应,造成橡胶硫化延迟。随着OC用量的增加,复合材料的Payne效应增强、拉伸强度先升高后降低。当OC用量为3份(质量,下同)时,复合材料的拉伸强度为21.4 MPa,优于纯NR。OC片层均匀分散在NR胶乳中,组装在亚微米级别的NR乳胶颗粒周围形成隔离网络结构,更有助于阻隔气体小分子的扩散和延长路径。当OC用量为7份时,复合材料的气体渗透系数较纯NR下降了47.7%。
Abstract:
Organic clay (OC)/natural rubber (NR) composites were prepared by static hot pressing method, the microstructure and morphology of the composites were characterized, and the effects of OC amount on the mechanical properties, curing characteristics and gas barrier properties of the composites were investigated. The results showed that the crosslinking density of OC/NR composite increased after OC filled into NR, but the layered OC would block the reaction between the rubber matrix and vulcanizing agent, preventing the vulcanizing agent from quickly participating in the crosslinking reaction and causing delayed vulcanization of the rubber. With the increase of OC amount, the Payne effect was enhanced and the tensile strength increased first and then decreased. The tensile strength of the OC/NR composite filled with OC of 3 phr (mass, the same below) was 21.4 MPa, which was better than pure NR. The OC layer was uniformly dispersed in NR latex and assembled around submicron sized NR latex particles to form an isolation network structure, which was more conducive to blocking the diffusion of small gas molecules and extending the path. When the amount of OC was 7 phr, the gas permeability coefficient of the composite decreased by 47.7% compared to pure NR.

参考文献/References

[1] CHEN H, LI Y J, WANG S Q, et al. Highly ordered structured montmorillonite/brominated butyl rubber nanocomposites: Dramatic enhancement of the gas barrier properties by an external magnetic field[J]. Journal of Membrane Science, 2018, 546: 22-30.[2] AKBARIMEHR D, MOHAMMAD H S M M. Elasto-plastic characteristics of the clay soil mixed with rubber waste using cyclic triaxial test results[J]. Arabian Journal of Geosciences, 2022, 15(14): 1280.[3] CAO R W, ZHAO X Y , ZHAO X Y, et al. Bromination modification of butyl rubber and its structure, properties, and application[J]. Industrial & Engineering Chemistry Research, 2019, 58(36): 16645-16653.[4] 薛玮先. 粘土改性对橡胶/粘土纳米复合材料结构与性能的研究[D]. 太原: 中北大学, 2023.[5] 张笑鸣. 高性能粘土/丁腈橡胶纳米复合材料的结构设计[D]. 北京: 华北电力大学, 2022.[6] 王健, 谭昊哲, 梁玉蓉, 等. 无卤复配阻燃剂对有机黏土/埃洛石/天然橡胶复合材料性能的影响[J]. 合成橡胶工业, 2021, 44(3): 196-200.[7] KUMAR S K, CASTRO M, SAITER A, et al. Development of poly(isobutylene-co-isoprene)/reduced graphene oxide nanocomposites for barrier, dielectric and sensing applications[J]. Materials Letters, 2013, 96: 109-112.[8] 褚丽君, 王健, 梁玉蓉. 天然胶乳/有机粘土复合材料的结构和拉伸诱导结晶行为研究[J]. 橡胶工业, 2019, 66(8): 569-572.[9] 杨军, 王进, 唐先贺, 等. 橡胶/蒙脱土纳米复合材料的制备技术进展[J]. 特种橡胶制品, 2003, 24(4): 46-51.[10] ZHAN Y H, LAVORGNA M, BUONOCORE G, et al. Enhancing electrical conductivity of rubber composites by constructing interconnected network of self-assembled graphene with latex mixing[J]. Journal of Materials Science, 2012, 22(21): 10464-10468.[11] LU Y L, YE F Y, MAO L X, et al. Micro-structural evolution of rubber/clay nanocomposites with vulcanization process[J]. Express Polymer Letters, 2011, 5(9): 777-787.[12] HE S J, WANG Y Q, WU Y P, et al. Preparation, structure, performance, industrialization and application of advanced rubber/clay nanocomposites based on latex compounding method[J]. Plastics, Rubber and Composites, 2010, 39(1): 33-42.[13] 王君, 周松, 王博, 等. 纳米蒙脱土对交联聚丙烯酸钠/丁腈橡胶吸水膨胀橡胶性能的影响[J]. 合成橡胶工业, 2017, 40(2): 147-151.[14] CAI F , YOU G H, ZHAO X Y, et al. The relationship between specific structure and gas permeability of bromobutyl rubber: A combination of experiments and molecular simulations[J]. Macromolecular Theory and Simulations, 2019, 28(6): 1900025.[15] YANG S Q , WU H, LI C H, et al. Constructing oriented two-dimensional large-sized modified graphene oxide barrier walls in brominated butyl rubber to achieve excellent gas barrier properties[J]. ACS Applied Materials & Interfaces, 2020, 12(3): 3976-3983.[16] PAYNE A R. The dynamic properties of carbon black-loaded natural rubber vulcanizates. Part I[J]. Journal of Applied Polymer Science, 1962, 6(19): 57-63.[17] FROHLICH J, NIEDERMEIER W, LUGINSLAND H D. The effect of filler-filler and filler-elastomer interaction on rubber reinforcement[J]. Composites(Part A): Applied Science and Manufacturing, 2005, 36(4): 449-460.

备注/Memo

备注/Memo:
太原工业学院引进人才科研资助项目(2023 KJ 018);太原工业学院第五届青年学科带头人资助项目(202307)。
更新日期/Last Update: 1900-01-01