|本期目录/Table of Contents|

[1]舒本勤,孙晓凯,李晓强,等.热塑性聚氨酯弹性体/甲胺铅碘复合薄膜的制备及压电性能[J].合成橡胶工业,2025,02:109-113.
 SHU Ben-qin,SUN Xiao-kai,LI Xiao-qiang,et al.Preparation and piezoelectric properties of thermoplastic polyurethane elastomer/methylamine lead iodine composite film[J].China synthetic rubber industy,2025,02:109-113.
点击复制

热塑性聚氨酯弹性体/甲胺铅碘复合薄膜的制备及压电性能(PDF)

《合成橡胶工业》[ISSN:1000-1255/CN:10-2023/TQ]

期数:
2025年02
页码:
109-113
栏目:
出版日期:
2025-03-15

文章信息/Info

Title:
Preparation and piezoelectric properties of thermoplastic polyurethane elastomer/methylamine lead iodine composite film
文章编号:
1000-1255(2025)02-0109-05
作者:
舒本勤1孙晓凯2李晓强1付宇恒2易 娟2胡国华2熊传溪2
1. 西北橡胶塑料研究设计院有限公司,陕西 咸阳 712023; 2. 武汉理工大学 材料科学与工程学院,武汉 430070
Author(s):
SHU Ben-qin1 SUN Xiao-kai2 LI Xiao-qiang1 FU Yu-heng2 YI Juan2 HU Guo-hua2 XIONG Chuan-xi2
1. Northwest Rubber and Plastic Research and Design Institute Co Ltd, Xianyang 712023, China; 2. School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
关键词:
热塑性聚氨酯弹性体甲胺铅碘复合薄膜力学性能介电常数铁电性能压电性能纳米发电机
Keywords:
thermoplastic polyurethane elastomer methylamine lead iodine composite film mechanical property dielectric constant ferroelectric property piezoelectric property nanogenerator
分类号:
TQ 334.1
DOI:
DOI:10.19908/j.cnki.ISSN1000-1255.2025.02.0109
文献标识码:
A
摘要:
采用低温液相法合成了甲胺铅碘,并通过流延成型法制备了热塑性聚氨酯弹性体/甲胺铅碘复合薄膜,考察了复合薄膜的微观形貌、力学性能、介电性能、铁电性能和压电性能等,研究了基于该复合薄膜制备的纳米发电机的性能。结果表明,相比于纯热塑性聚氨酯弹性体,热塑性聚氨酯弹性体/甲胺铅碘复合薄膜的介电常数、剩余极化和压电性能均得到不同程度的提高,其中压电系数可达38 pC/N,超过了目前商用聚偏二氟乙烯压电薄膜的压电系数。基于热塑性聚氨酯弹性体/甲胺铅碘复合薄膜制备的压电纳米发电机的输出电压和电流分别达到了7.5 V和100 nA,可应用于人体能量收集和智能可穿戴传感器等领域。
Abstract:
Methylamine lead iodine was synthesized by low-temperature liquid phase method, and thermoplastic polyurethane elastomer/methylamine lead iodine composite films were prepared by tap casting method. The microstructure, mechanical properties, dielectric properties, ferroelectric pro-perties and piezoelectric properties of the composite films were investigated. The properties of nanoge-nerator based on the composite films were studied. The results showed that compared with pure thermoplastic polyurethane elastomer, the dielectric constant, residual polarization and piezoelectric properties of the thermoplastic polyurethane elastomer/methylamine lead iodine composite films were improved to various degrees. The piezoelectric coefficient could reach 38 pC/N, which had exceeded the current commercial polyvinylidene fluoride piezoelectric film. The output voltage and current of the piezoelectric nanogenerator based on the thermoplastic polyurethane elastomer/methylamine lead iodine composite films reached 7.5 V and 100 nA, respectively, which could be applied to human energy collection and intelligent wearable sensors.

参考文献/References

[1] YI J, YE Z, ZHANG S, et al. Corona: An effective polarization strategy of polymer composites with high-k filler for piezoelectric nanogenerators [J]. Applied Energy, 2024, 353: 122005. [2] SHI K M, SUN B, HUANG X Y, et al. Synergistic effect of graphene nanosheet and BaTiO3 nanoparticles on performance enhancement of electrospun PVDF nanofiber mat for flexible piezoelectric nanogenerators[J]. Nano Energy, 2018, 52: 153-162.[3] LUN M M, LUO J Q, ZHANG Z X, et al. Piezoelectric self-power supply driven by ferroelastic host-guest supramolecule with considerable electromechanical conversion capability [J]. Chemical Engineering Journal, 2023, 475: 145969.[4] SUN L, ZHU L, ZhANG C, et al. Mechanical manipulation of silicon-based Schottky diodes via flexoelectricity[J]. Nano Energy, 2021, 83: 105855.[5] KIM Y-I, KIM D, JUNG J, et al. Airflow-induced P(VDF-TrFE) fiber arrays for enhanced piezoelectric energy harvesting [J]. APL Materials, 2022, 10(3): 031110.[6] CHEN H Y, ZHOU L L, FANG Z, et al. Piezoelectric nanogenerator based on in situ growth all-inorganic CsPbBr3 pero-vskite nanocrystals in PVDF fibers with long-term stability [J].Advanced Functional Materials, 2021, 31(19): 2011073.[7] ZHAO X F, ZHANG X P, ZHAO Z E, et al. Macroscopic piezoelectricity of an MAPbI3 semiconductor and its associated multifunctional device [J]. Nano Energy, 2023, 118: 108980.[8] PRAJESH N, SHARMA V B, RAJPUT S S, et al. Flexible piezoelectric nanogenerators based on one-dimensional neutral coordination network composites[J]. ACS Sustainable Che-mistry & Engineering, 2022, 10(30): 9911-9920.[9] CONINGS B, BAETEN L, de DOBBELAERE C, et al. Pero-vskite-based hybrid solar cells exceeding 10% efficiency with high reproducibility using a thin film sandwich approach [J]. Advanced Materials, 2014. 26(13): 2041-2046.

备注/Memo

备注/Memo:
更新日期/Last Update: 1900-01-01