|本期目录/Table of Contents|

[1]王 博,张瑞雪,赖 萌,等.螺吡喃功能化丁苯嵌段共聚物的合成与光致变色行为[J].合成橡胶工业,2025,1:16-22.
 WANG Bo,ZHANG Rui-xue,LAI Meng,et al.Synthesis and photochromic behavior of spiro-pyran functionalized styrene-butadiene block copolymer[J].China synthetic rubber industy,2025,1:16-22.
点击复制

螺吡喃功能化丁苯嵌段共聚物的合成与光致变色行为(PDF)

《合成橡胶工业》[ISSN:1000-1255/CN:62-1036/TQ]

期数:
2025年1期
页码:
16-22
栏目:
出版日期:
1900-01-01

文章信息/Info

Title:
Synthesis and photochromic behavior of spiro-pyran functionalized styrene-butadiene block copolymer
文章编号:
1000-1255(2025)01-0016-07
作者:
王 博张瑞雪赖 萌马红卫?鄢韩 丽?鄢李 杨
大连理工大学 精细化工国家重点实验室/辽宁省高分子科学与工程重点实验室,辽宁 大连 116024
Author(s):
WANG Bo ZHANG Rui-xue LAI Meng MA Hong-wei HAN Li LI Yang
State Key Laboratory of Fine Chemicals/Liaoning Provincial Key Laboratory of Polymer Science and Engineering, Dalian University of Technology, Dalian 116024, China
关键词:
丁苯嵌段共聚物活性负离子溶液聚合螺吡喃光致变色行为功能化
Keywords:
styrene-butadiene block copolymer living anionic solution polymerization spiro-pyran photochromic behavior functionalization
分类号:
TQ 333.1
DOI:
DOI:10.19908/j.cnki.ISSN1000-1255.2025.01.0016
文献标识码:
A
摘要:
利用活性负离子溶液聚合技术,通过分布加料法制备了含有硅氢基团功能化的聚苯乙烯(PVPDMS)与聚丁二烯(PB)组成的丁苯嵌段共聚物,即PVPDMS-b-PB。采用凝胶渗透色谱分析其数均分子量和分子量分布,结果显示,PVPDMS-b-PB呈现出单峰窄分布的特征且分子量可控;在PVPDMS-b-PB中,PVPDMS嵌段的分子量不变,PB嵌段的分子量逐渐增大。进一步设计合成了炔基官能化的螺吡喃单体(SP-Yne),在室温下通过SP-Yne与PVPDMS-b-PB(数均分子量10.4 kg/mol)的硅氢加成反应,制备了结构可控的螺吡喃(SP)功能化丁苯嵌段共聚物,即(PVPDMS-g-SP)-b-PB。采用核磁共振波谱仪对上述单体和聚合物进行结构分析,结果表明,在室温下,硅氢基团与炔基和双键的硅氢加成反应具有选择性,PVPDMS嵌段的硅氢基团能够与SP-Yne的炔基基团反应,而不与PB嵌段的双键反应,从而避免了PVPDMS嵌段中硅氢基团与PB嵌段中双键的硅氢加成反应而产生的自交联,成功将SP定向引入到PVPDMS嵌段中。采用紫外光谱仪对SP-Yne和(PVPDMS-g-SP)-b-PB的光致变色行为进行了分析,结果表明,在三氯甲烷、四氢呋喃和甲苯溶液中,365 nm紫外光照射下,SP-Yne和(PVPDMS-g-SP)-b-PB均出现明显的光致变色行为,其最大吸收波长与溶液的极性存在显著关系。
Abstract:
Using active anionic solution polyme-rization technology, a styrene-butadiene block copolymer (PVPDMS-b-PB) functionalized with silicon-hydride groups was synthesized via feed distribution method. Gel permeation chromatography was employed to analyze the number-average molecular weight and polydispersity index, revealing that PVPDMS-b-PB exhibited a unimodal, narrow distribution with a controllable molecular weight. In PVPDMS-b-PB, the molecular weight of the PVPDMS block remained constant, while the mole-cular weight of the PB block gradually increased. Further, an alkyne-functionalized spiro-pyran monomer (SP-Yne) was designed and synthesized. At room temperature, the silicon-hydride addition reaction between SP-Yne and PVPDMS-b-PB (number-average molecular weight 10.4 kg/mol) resulted in the formation of a structurally controlled spiro-pyran (SP)-functionalized styrene-butadiene block copolymer, namely (PVPDMS-g-SP)-b-PB. Structural ana-lysis of the monomer and polymer was carried out using nuclear magnetic resonance spectroscopy. The results showed that at room temperature, the silicon-hydride addition reaction between the silicon-hydride groups and the alkyne or double bonds was selective. The silicon-hydride groups in the PVPDMS block reacted with the alkyne groups in SP-Yne, avoiding reactions with the double bonds in the PB block, thereby preventing self-crosslinking between the silicon-hydride groups in PVPDMS and the double bonds in PB. UV spectroscopy was used to analyze the photochromic behavior of SP-Yne and (PVPDMS-g-SP)-b-PB, and the results showed significant photochromic behavior under 365 nm UV irradiation in chloroform, tetrahydrofuran, and toluene solutions. The maximum absorption wavelength exhibited a significant correlation with the polarity of the solution.

参考文献/References

[1] 赵姜维, 石艳, 李建成, 等. 基于点击化学和可逆加成-断裂链转移自由基聚合合成极性链接枝聚丁二烯[J]. 合成橡胶工业, 2023, 46(1): 2-5.[2] ZHANG R X, MA H W, LI X W, et al. The simultaneous control over the alternating sequence and the inner-core position of the mesogenic segments in side-chain liquid crystal polymers[J]. Journal of Molecular Liquids, 2022, 363: 119916.[3] ZHANG R X, MA H W, LI X W, et al. Synthesis and characterization of photo-responsive azobenzene side-chain liquid crystalline polystyrenes with a mesogenic phase of wide tempe-rature range[J]. Dyes and Pigments, 2023, 210: 111007.[4] CASTET F, RODRIGUEZ V, POZZO J L, et al. Design and characterization of molecular nonlinear optical switches[J]. Accounts of chemical research, 2013, 46(11): 2656-2665.[5] KIM J, YUN H, LEE Y J, et al. Photoswitchable surfactant-driven reversible shape- and color-changing block copolymer particles[J]. Journal of the American Chemical Society, 2021, 143(33): 13333-13341.[6] RAZAVI B, ABDOLLAHI A, ROGHANI-MAMAQANI H, et al. Light-, temperature-, and pH-responsive micellar assemblies of spiropyran-initiated amphiphilic block copolymers: Kinetics of photochromism, responsiveness, and smart drug delivery[J]. Materials Science and Engineering: C, 2020, 109: 110524.[7] KEYES A, DAU H, MATYJASZEWSKI K, et al. Tandem living insertion and controlled radical polymerization for polyolefin-polyvinyl block copolymers[J]. Angewandte Chemie, 2022, 134(10): e 202112742. [8] WANG X Q, HUO Z Y, XIE X Y, et al. Recent advances in sequence-controlled ring-opening copolymerizations of monomer mixtures[J]. Chemistry-An Asian Journal, 2023, 18(4): e 202201147.[9] TRUONG N P, JONES G R, BRADFORD K G E, et al. A comparison of RAFT and ATRP methods for controlled radical polymerization[J]. Nature Reviews Chemistry, 2021, 5(12): 859-869.[10] CHEN X, MONDAL P. Effects of NaOH amount on condensation mechanism to form aluminosilicate, case study of geopolymer gel synthesized via sol-gel method[J]. Journal of Sol-Gel Science and Technology, 2020, 96: 589-603.[11] 张宇. 含光敏基团线形梳状/星形梳状高支化聚丁二烯研究[D]. 大连: 大连理工大学, 2014.[12] ZHANG R X, MA H W, LI X W, et al. Well-controlled spiropyran functionalized polystyrenes via a combination of anionic polyme-rization and hydrosilylation for photoinduced solvatochromism[J]. Polymer, 2021, 213: 123311.[13] HUANG S, HAN L, MA H W, et al. Determination of refractive index increment of synthetic polybutadienes and microstructural control of grafting density and liquid crystalline properties[J]. Polymer Chemistry, 2020, 11(14): 2559-2567.[14] ZHANG X Y, HOU L L, SAMORì P. Coupling carbon nanomate-rials with photochromic molecules for the generation of optically responsive materials[J]. Nature Communications, 2016, 7(1): 11118.[15] LUCAS C D S, EMELINE R, KATHARINA L. Self-assembly of giant polymer vesicles by light-assisted solid hydration[J]. Macromolecular Rapid Communications, 2019, 40(9): 1900027.[16] MURASE N, MUKAWA T, SUNAYAMA H, et al. Molecularly imprinted polymers bearing spiropyran-based photoresponsive binding sites capable of photo-triggered switching for molecular recognition activity[J]. Journal of Polymer Science(Part B): Polymer Physics, 2016, 54(16): 1637-1644.

备注/Memo

备注/Memo:
中央高校基本科研业务费资助项目(DUT 21 LAB 129)。
更新日期/Last Update: 1900-01-01