[1] 过增元. 对流换热的物理机制及其控制: 速度场与热流场的协同[J]. 科学通报, 2000, 45(19): 2118-2122.[2] Guo Zengyuan, Li Deyu, Wang Buxuan. A novel concept for convective heat transfer enhancement[J]. International Journal of Heat and Mass Transfer, 1998, 41(14): 2221-2225.[3] Ma Liangdong, Li Zengyao, Tao Wenquan. Experimental verification of the field synergy principle[J]. International Communications in Heat and Mass Transfer, 2007, 34(3): 269-276.[4] 高贵良, 罗小平, 熊少武. 场协同及混沌[J]. 石油化工设备, 2007, 36(5): 53-58.[5] 田文喜, 余方伟, 秋穗正, 等. 场协同理论在平行通道内的数值验证[J]. 核动力工程, 2005, 26(3): 237-241.[6] 熊少武, 罗小平, 高贵良. 强化传热的场协同理论研究进展[J].石油化工设备, 2007, 36(1): 55-59.[7] Tao Wenquan, Guo Zengyuan, Wang Buxuan. Field synergy principle for enhancing convective heat transfer—its extension and numerical verifications[J]. International Journal of Heat and Mass Transfer, 2002, 45(18): 3849-3856.[8] 王娴, 宋富强, 屈治国, 等. 场协同理论在椭圆型流动中的数值验证[J]. 工程热物理学报, 2002, 23(1): 59-62.[9] Li Xin, He Yaling, Tao Wenquan. Analysis and extension of field synergy principle (FSP) for compressible boundary-layer heat transfer[J]. International Journal of Heat and Mass Transfer, 2015, 84: 1061-1069.[10] 刘伟, 刘志春, 黄素逸. 湍流换热的场物理量协同与传热强化分析[J]. 科学通报, 2010, 55(3): 281-288.[11] 何雅玲, 雷勇刚, 田丽亭, 等. 高效低阻强化换热技术的三场协同性探讨[J]. 工程热物理学报, 2009, 30(11): 1904-1906.[12] He Yaling, Wu Ming, Tao Wenquan, et al. Improvement of the thermal performance of pulse tube refrigerator by using a ge-neral principle for enhancing energy transport and conversion processes[J]. Applied Thermal Engineering, 2004, 24(1): 79-93.[13] 吴良柏, 李震, 宋耀祖. 热质传递过程的场协同原理[J]. 科学通报, 2009, 54(14): 2045-2050.[14] An Lisha, Lei Xiangshu, Qi Xin, et al. Improvement of heat and mass transfer performance in a polysilicon chemical vapor deposition reactor with field synergy principle[J]. Energy Procedia, 2017, 105: 688-693.[15] 陈群, 任建勋, 过增元. 流体流动场协同原理及其在减阻中的应用[J]. 科学通报, 2008, 53(4): 489-492.[16] Chen Qun, Wang Moran, Guo Zengyuan. Field synergy principle for energy conservation analysis and application[J]. Advances in Mechanical Engineering, 2010, 2010(2): 1652-1660.[17] 陶文铨, 何雅玲. 场协同原理: 它的科学之美及与■的关系[J]. 中国科学: 技术科学, 2021, 51(10): 1155-1165.[18] Xing Meibo, Zhang Hongfa, Zhang Cancan. An update review on performance enhancement of refrigeration systems using nano-fluids[J]. Journal of Thermal Science, 2022, 31(4): 1236-1251.[19] Tao Wenquan, He Yaling, Wang Qiuwang, et al. A unified analysis on enhancing single phase convective heat transfer with field synergy principle[J]. International Journal of Heat and Mass Transfer, 2002, 45(24): 4871-4879.[20] Ho C K, Iverson B D. Review of high-temperature central receiver designs for concentrating solar power[J]. Renewable and Sustainable Energy Reviews, 2014, 29: 835-846.[21] Li Yuqiang, Liu Gang, Rao Zhenghua, et al. Field synergy principle analysis for reducing natural convection heat loss of a solar cavity receiver[J]. Renewable Energy, 2015, 75: 257-265.[22] Yin Peng, Mohamed H Y, Bashar B S, et al. Evaluation of efficiency, thermohydraulic performance evaluation criterion, and field synergy principle improvement of the parabolic solar collector containing the hybrid nanofluid using spring turbulators[J]. Case Studies in Thermal Engineering, 2023, 41: 102571.[23] Jang Jiin-Yuh, Wu Mu-Cheng, Chang Wen-Jeng. Numerical and experimental studies of three-dimensional plate-fin and tube heat exchangers[J]. International Journal of Heat and Mass Transfer, 1996, 39(14): 3057-3066.[24] Wen Jian, Yang Huizhu, Wang Simin, et al. PIV experimental investigation on shell-side flow patterns of shell and tube heat exchanger with different helical baffles[J]. International Journal of Heat and Mass Transfer, 2017, 104: 247-259.[25] Wu Xuehong, Zhang Wenhui, Gou Qiuping, et al. Numerical simulation of heat transfer and fluid flow characteristics of composite fin[J]. International Journal of Heat and Mass Transfer, 2014, 75: 414-424.[26] Zhao Xiaohuan, E Jiaqiang, Zhang Zhiqing, et al. A review on heat enhancement in thermal energy conversion and management using field synergy principle[J]. Applied Energy, 2020, 257: 113995.[27] 郑连存, 韩世豪. 基于流变协同机制的粘弹性非牛顿流体耦合流动与传热问题研究[J]. 科学观察, 2018, 13(6): 32-39.[28] 包晓琳. 幂律流体螺旋管内流场与温度场协同优化研究[D]. 济南: 山东建筑大学, 2020.[29] 张浩, 张志, 王艳静, 等. 螺旋管内幂律流体流动传热优化模拟研究[J]. 煤气与热力, 2022, 42(11): 19-24.[30] Chen Chieh-Li, Chang Shing-Cheng, Chen Chih-Yung. Lattice Boltzmann simulation of convective heat transfer of non-Newtonian fluids in impeller stirred tank[J]. Applied Mathematical Modelling, 2017, 46: 519-535.[31] Vocale P, Andrea M, Fabio B, et al. Analysis of convective heat transfer in non-Newtonian fluids by applying the field sy-nergy principle approach[J]. Heat Transfer Research, 2020, 51(3):193-206.[32] 宋厚春. 高聚物流变学的原理、发展及应用[J]. 合成技术及应用, 2004, 19(4): 28-32.[33] 瞿金平. 塑料加工成型机械创新技术研究[J]. 机电工程技术, 2013, 42(1): 1-7.[34] 鉴冉冉, 谢鹏程, 杨卫民. 聚合物螺杆塑化过程传热特性研究进展[J]. 塑料, 2016, 45(4): 69-72.[35] Qu Jinping, Yang Zhitao, Yin Xiaochun, et al. Characteristics study of polymer melt conveying capacity in vane plasticization extruder[J]. Polymer-Plastics Technology and Engineering, 2009, 48(12): 1269-1274.[36] 唐玉峰, 田茂诚, 张冠敏, 等. 平行平板通道内置螺旋线圈流动传热特性[J]. 中国电机工程学报, 2011, 31(2): 55-61.[37] Jian Ranran, Yang Weimin, Xie Pengcheng, et al. Enhancing a multi-field-synergy process for polymer composite plasticization: A novel design concept for screw to facilitate phase-to-phase thermal and molecular mobility[J]. Applied Thermal Engineering, 2020, 164: 114448.[38] Jian Ranran, Sain M, Xie Pengcheng, et al. Heat transfer and viscous polymer melting capacity correlation in self-controlled torsion induced extrusion[J]. International Communications in Heat and Mass Transfer, 2021, 126(6): 105424.[39] 王萌萌, 谢鹏程, 鉴冉冉, 等. 新型强化传热螺杆结构传热性能数值研究及场协同分析[J]. 北京化工大学学报(自然科学版), 2018, 45(1): 65-71.[40] 赵世超, 杨卫民, 鉴冉冉, 等. 新型场协同螺杆元件强化传质实验[J]. 塑料, 2017, 46(6): 88-91.[41] 谭伟华, 关昌峰, 谢鹏程, 等. 螺杆熔融段构型对传热效率的影响[J]. 塑料科技, 2019, 47(3): 95-100.[42] 马超, 朱向哲, 马尉然. 非对称差速三螺杆挤出机混合机理分析[J]. 塑料, 2023, 52(2): 175-180.[43] Jian Ranran, Dai Rui, Sain M, et al. A strategy of stretching melt to a thin layer: Self-controlled “stretching melt-pancakes” to enhance heat transfer and mixing during polymer extrusion[J]. Applied Thermal Engineering, 2023, 224: 120090.