|本期目录/Table of Contents|

[1]黄士争,潘 威,杨卫民,等.场协同理论及其在非牛顿流体传热过程的应用研究进展[J].合成橡胶工业,2024,6:510-516.
 HUANG Shi-zheng,PAN Wei,YANG Wei-min,et al.Research progress in field synergy theory and its application in heat transfer processes of non-Newtonian fluids[J].China synthetic rubber industy,2024,6:510-516.
点击复制

场协同理论及其在非牛顿流体传热过程的应用研究进展(PDF)

《合成橡胶工业》[ISSN:1000-1255/CN:62-1036/TQ]

期数:
2024年6期
页码:
510-516
栏目:
出版日期:
1900-01-01

文章信息/Info

Title:
Research progress in field synergy theory and its application in heat transfer processes of non-Newtonian fluids
文章编号:
1000-1255(2024)06-0510-07
作者:
黄士争1潘 威1杨卫民2曾宪奎1鉴冉冉123?鄢
1. 青岛科技大学 机电工程学院,山东 青岛 266061; 2. 北京化工大学 机电工程学院,北京 100029; 3. 大连橡胶塑料机械有限公司,辽宁 大连 116036
Author(s):
HUANG Shi-zheng1 PAN Wei1 YANG Wei-min2 ZENG Xian-kui1 JIAN Ran-ran123
1. School of Mechanical and Electrical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China; 2. School of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China; 3. Dalian Rubber & Plastics Machinery Co Ltd, Dalian 116036, China
关键词:
场协同理论非牛顿流体强化传热塑化质量综述
Keywords:
field synergy theory non-Newtonian fluid heat transfer enhancement plasticization qua-lity review
分类号:
TQ 330.1
DOI:
DOI:10.19908/j.cnki.ISSN1000-1255.2024.06.0510
文献标识码:
A
摘要:
概述了场协同原理的发展和完善过程,系统总结和分析了场协同原理在非牛顿流体,如幂律流体和聚合物加工过程中强化传热的应用探索及需要克服的难题,并展望了场协同原理在优化聚合物熔体传热过程、实现优质高效塑化领域的发展前景。
Abstract:
The process of development and improvement of field synergy principle were summarized, the exploration of the application of field synergistic principle to enhance heat transfer in non-Newtonian fluids, such as power-law fluids and polymer processing and the difficulties that needed to be overcome were systematically summarized and analyzed with 43 references, and the development prospects of field synergistic principle in optimizing the heat transfer process of polymer melts and achieving high-quality and high-efficiency plasticization were also prospected.

参考文献/References

[1] 过增元. 对流换热的物理机制及其控制: 速度场与热流场的协同[J]. 科学通报, 2000, 45(19): 2118-2122.[2] Guo Zengyuan, Li Deyu, Wang Buxuan. A novel concept for convective heat transfer enhancement[J]. International Journal of Heat and Mass Transfer, 1998, 41(14): 2221-2225.[3] Ma Liangdong, Li Zengyao, Tao Wenquan. Experimental verification of the field synergy principle[J]. International Communications in Heat and Mass Transfer, 2007, 34(3): 269-276.[4] 高贵良, 罗小平, 熊少武. 场协同及混沌[J]. 石油化工设备, 2007, 36(5): 53-58.[5] 田文喜, 余方伟, 秋穗正, 等. 场协同理论在平行通道内的数值验证[J]. 核动力工程, 2005, 26(3): 237-241.[6] 熊少武, 罗小平, 高贵良. 强化传热的场协同理论研究进展[J].石油化工设备, 2007, 36(1): 55-59.[7] Tao Wenquan, Guo Zengyuan, Wang Buxuan. Field synergy principle for enhancing convective heat transfer—its extension and numerical verifications[J]. International Journal of Heat and Mass Transfer, 2002, 45(18): 3849-3856.[8] 王娴, 宋富强, 屈治国, 等. 场协同理论在椭圆型流动中的数值验证[J]. 工程热物理学报, 2002, 23(1): 59-62.[9] Li Xin, He Yaling, Tao Wenquan. Analysis and extension of field synergy principle (FSP) for compressible boundary-layer heat transfer[J]. International Journal of Heat and Mass Transfer, 2015, 84: 1061-1069.[10] 刘伟, 刘志春, 黄素逸. 湍流换热的场物理量协同与传热强化分析[J]. 科学通报, 2010, 55(3): 281-288.[11] 何雅玲, 雷勇刚, 田丽亭, 等. 高效低阻强化换热技术的三场协同性探讨[J]. 工程热物理学报, 2009, 30(11): 1904-1906.[12] He Yaling, Wu Ming, Tao Wenquan, et al. Improvement of the thermal performance of pulse tube refrigerator by using a ge-neral principle for enhancing energy transport and conversion processes[J]. Applied Thermal Engineering, 2004, 24(1): 79-93.[13] 吴良柏, 李震, 宋耀祖. 热质传递过程的场协同原理[J]. 科学通报, 2009, 54(14): 2045-2050.[14] An Lisha, Lei Xiangshu, Qi Xin, et al. Improvement of heat and mass transfer performance in a polysilicon chemical vapor deposition reactor with field synergy principle[J]. Energy Procedia, 2017, 105: 688-693.[15] 陈群, 任建勋, 过增元. 流体流动场协同原理及其在减阻中的应用[J]. 科学通报, 2008, 53(4): 489-492.[16] Chen Qun, Wang Moran, Guo Zengyuan. Field synergy principle for energy conservation analysis and application[J]. Advances in Mechanical Engineering, 2010, 2010(2): 1652-1660.[17] 陶文铨, 何雅玲. 场协同原理: 它的科学之美及与■的关系[J]. 中国科学: 技术科学, 2021, 51(10): 1155-1165.[18] Xing Meibo, Zhang Hongfa, Zhang Cancan. An update review on performance enhancement of refrigeration systems using nano-fluids[J]. Journal of Thermal Science, 2022, 31(4): 1236-1251.[19] Tao Wenquan, He Yaling, Wang Qiuwang, et al. A unified analysis on enhancing single phase convective heat transfer with field synergy principle[J]. International Journal of Heat and Mass Transfer, 2002, 45(24): 4871-4879.[20] Ho C K, Iverson B D. Review of high-temperature central receiver designs for concentrating solar power[J]. Renewable and Sustainable Energy Reviews, 2014, 29: 835-846.[21] Li Yuqiang, Liu Gang, Rao Zhenghua, et al. Field synergy principle analysis for reducing natural convection heat loss of a solar cavity receiver[J]. Renewable Energy, 2015, 75: 257-265.[22] Yin Peng, Mohamed H Y, Bashar B S, et al. Evaluation of efficiency, thermohydraulic performance evaluation criterion, and field synergy principle improvement of the parabolic solar collector containing the hybrid nanofluid using spring turbulators[J]. Case Studies in Thermal Engineering, 2023, 41: 102571.[23] Jang Jiin-Yuh, Wu Mu-Cheng, Chang Wen-Jeng. Numerical and experimental studies of three-dimensional plate-fin and tube heat exchangers[J]. International Journal of Heat and Mass Transfer, 1996, 39(14): 3057-3066.[24] Wen Jian, Yang Huizhu, Wang Simin, et al. PIV experimental investigation on shell-side flow patterns of shell and tube heat exchanger with different helical baffles[J]. International Journal of Heat and Mass Transfer, 2017, 104: 247-259.[25] Wu Xuehong, Zhang Wenhui, Gou Qiuping, et al. Numerical simulation of heat transfer and fluid flow characteristics of composite fin[J]. International Journal of Heat and Mass Transfer, 2014, 75: 414-424.[26] Zhao Xiaohuan, E Jiaqiang, Zhang Zhiqing, et al. A review on heat enhancement in thermal energy conversion and management using field synergy principle[J]. Applied Energy, 2020, 257: 113995.[27] 郑连存, 韩世豪. 基于流变协同机制的粘弹性非牛顿流体耦合流动与传热问题研究[J]. 科学观察, 2018, 13(6): 32-39.[28] 包晓琳. 幂律流体螺旋管内流场与温度场协同优化研究[D]. 济南: 山东建筑大学, 2020.[29] 张浩, 张志, 王艳静, 等. 螺旋管内幂律流体流动传热优化模拟研究[J]. 煤气与热力, 2022, 42(11): 19-24.[30] Chen Chieh-Li, Chang Shing-Cheng, Chen Chih-Yung. Lattice Boltzmann simulation of convective heat transfer of non-Newtonian fluids in impeller stirred tank[J]. Applied Mathematical Modelling, 2017, 46: 519-535.[31] Vocale P, Andrea M, Fabio B, et al. Analysis of convective heat transfer in non-Newtonian fluids by applying the field sy-nergy principle approach[J]. Heat Transfer Research, 2020, 51(3):193-206.[32] 宋厚春. 高聚物流变学的原理、发展及应用[J]. 合成技术及应用, 2004, 19(4): 28-32.[33] 瞿金平. 塑料加工成型机械创新技术研究[J]. 机电工程技术, 2013, 42(1): 1-7.[34] 鉴冉冉, 谢鹏程, 杨卫民. 聚合物螺杆塑化过程传热特性研究进展[J]. 塑料, 2016, 45(4): 69-72.[35] Qu Jinping, Yang Zhitao, Yin Xiaochun, et al. Characteristics study of polymer melt conveying capacity in vane plasticization extruder[J]. Polymer-Plastics Technology and Engineering, 2009, 48(12): 1269-1274.[36] 唐玉峰, 田茂诚, 张冠敏, 等. 平行平板通道内置螺旋线圈流动传热特性[J]. 中国电机工程学报, 2011, 31(2): 55-61.[37] Jian Ranran, Yang Weimin, Xie Pengcheng, et al. Enhancing a multi-field-synergy process for polymer composite plasticization: A novel design concept for screw to facilitate phase-to-phase thermal and molecular mobility[J]. Applied Thermal Engineering, 2020, 164: 114448.[38] Jian Ranran, Sain M, Xie Pengcheng, et al. Heat transfer and viscous polymer melting capacity correlation in self-controlled torsion induced extrusion[J]. International Communications in Heat and Mass Transfer, 2021, 126(6): 105424.[39] 王萌萌, 谢鹏程, 鉴冉冉, 等. 新型强化传热螺杆结构传热性能数值研究及场协同分析[J]. 北京化工大学学报(自然科学版), 2018, 45(1): 65-71.[40] 赵世超, 杨卫民, 鉴冉冉, 等. 新型场协同螺杆元件强化传质实验[J]. 塑料, 2017, 46(6): 88-91.[41] 谭伟华, 关昌峰, 谢鹏程, 等. 螺杆熔融段构型对传热效率的影响[J]. 塑料科技, 2019, 47(3): 95-100.[42] 马超, 朱向哲, 马尉然. 非对称差速三螺杆挤出机混合机理分析[J]. 塑料, 2023, 52(2): 175-180.[43] Jian Ranran, Dai Rui, Sain M, et al. A strategy of stretching melt to a thin layer: Self-controlled “stretching melt-pancakes” to enhance heat transfer and mixing during polymer extrusion[J]. Applied Thermal Engineering, 2023, 224: 120090.

备注/Memo

备注/Memo:
国家自然科学基金资助项目(52206095);山东省自然科学基金资助项目(ZR 2021 QE 232)。
更新日期/Last Update: 1900-01-01