|本期目录/Table of Contents|

[1]张 丰,高景龙,刘艳辉.基于陶瓷化-炭化机制的硅橡胶复合材料的耐烧蚀隔热性能[J].合成橡胶工业,2024,6:503-506.
 ZHANG Feng,GAO Jing-long,LIU Yan-hui.Anti-ablation and thermal insulation properties of silicone rubber composites based on ceramization-carbonization mechanism[J].China synthetic rubber industy,2024,6:503-506.
点击复制

基于陶瓷化-炭化机制的硅橡胶复合材料的耐烧蚀隔热性能(PDF)

《合成橡胶工业》[ISSN:1000-1255/CN:62-1036/TQ]

期数:
2024年6期
页码:
503-506
栏目:
出版日期:
1900-01-01

文章信息/Info

Title:
Anti-ablation and thermal insulation properties of silicone rubber composites based on ceramization-carbonization mechanism
文章编号:
1000-1255(2024)06-0503-04
作者:
张 丰高景龙刘艳辉
沈阳理工大学 材料科学与工程学院,沈阳 110159
Author(s):
ZHANG Feng GAO Jing-long LIU Yan-hui
School of Material Science and Engineering, Shenyang Ligong University, Shenyang 110169, China
关键词:
硅橡胶耐烧蚀填料隔热线烧蚀率衬底温度陶瓷化-炭化耦合作用
Keywords:
silicone rubber anti-ablation filler heat insulation linear ablation rate substrate temperature ceramization-carbonization coupling
分类号:
TQ 333.93
DOI:
DOI:10.19908/j.cnki.ISSN1000-1255.2024.06.0503
文献标识码:
B
摘要:
以热硫化硅橡胶为基体,聚芳基乙炔、短切碳纤维、二氧化锆和碳纤维布为耐烧蚀填料,制备了耐烧蚀隔热硅橡胶复合材料,探究了耐烧蚀填料对复合材料的线烧蚀率和衬底温度的影响。结果表明,随着耐烧蚀填料的依次加入,复合材料的线烧蚀率下降、衬底温度降低,当聚芳基乙炔、短切碳纤维、二氧化锆和碳纤维布加入量均为10份(质量)时,所得复合材料的耐烧蚀隔热性能最佳,其线烧蚀率为0.043 mm/s,衬底温度为70 ℃。这主要是因为耐烧蚀填料和硅橡胶基体间发生了陶瓷化-炭化耦合反应,生成的陶瓷化物覆盖于碳纤维布表面形成致密的烧蚀层。
Abstract:
Silicone rubber composites with anti-ablation and thermal insulation properties were prepared with hot vulcanized silicone rubber as matrix, and polyarylacetylene, short carbon fiber, zirconia and carbon fiber cloth as anti-ablation fillers, and the effect of anti-ablation fillers on linear ablation rate and substrate temperature of the composites was investigated. The results showed that the linear ablation rate and substrate temperature of the composites were decreased with the sequential addition of the anti-ablation fillers. When the addition amount of polyarylacetylene, short carbon fiber, zirconia, and carbon fiber cloth were all 10 phr (mass), the resul-ting composite had the best anti-ablation and thermal insulation properties with a linear ablation rate of 0.043 mm/s and a substrate temperature of 70 ℃. This was mainly attributed to the ceramization-carbonization coupling reaction between the anti-ablation fillers and silicone rubber matrix, which led to the formation of a dense ablation layer that covered the surface of carbon fiber cloth.

参考文献/References

[1] Jiang Chengzhi, Jin Yujuan, Gao jinglong. Ablation and thermal insulation properties of silicone rubber-polyarylacetylene-carbonwoven laminates for solid rocket motor [J]. Plastics, Rubber and Composites, 2021, 50(7): 362-369.[2] Ouyang Yu, Li Xiaofei, Ding Fei, et al. Simultaneously enhance thermal conductive property and mechanical properties of silicon rubber composites by introducing ultrafine Al2O3 nanospheres prepared via thermal plasma[J]. Composites Science and Technology, 2020, 190: 108019.[3] Tian Jinfeng, Yan Liwei, Zhang Hao, et al. Enhanced flexibi-lity and ablative performance of silicone rubber by constructing an interpenetrating zirconium-containing polysiloxane double network[J]. Polymer, 2023, 270: 125749.[4] Fu Quansheng, Wen Yanwei, Lou Yang, et al. Dual network of poly-benzoxazine/nitrile rubber composite and its ablation resistance and thermal insulation properties[J]. 合成橡胶工业, 2023, 46(2): 153.[5] Liu Zhuodong, Chen Ziyang, Yan Liwei, et al. Ordered graphitized ceramic layer induced by liquid crystal epoxy resin in silicone rubber composites with enhanced ablation resistance performance[J]. Materials Chemistry and Physics, 2021, 270: 124853.[6] Bartosik D, Szadkowski B, Kusmierek M, et al. Advanced ethylene-propylene-diene(EPDM) rubber composites filled with raw silicon carbide or hybrid systems with different conventional fillers[J]. Polymers, 2022, 14(7): 1383.[7] Cao Xianwu, Li Chunnong, Tong Yizhang, et al. High conductivity thermoelectric insulation composite silicone rubber prepared by carbon nanotubes and silicon carbide composite filler[J]. Polymer Composites, 2022, 43(4): 2139-2149.[8] Markova E S, Furman A N, Shekhtman S P, et al. Passive Adsorption of aromatic substances on silicon carbide and nitrile rubber composites and a comparison of the chromatographic profiles of banana candy, fresh banana, and “banana” flavor[J]. Journal of Analytical Chemistry, 2023, 78(1): 68-73.[9] Yang Shifang, Liu Yunpeng, Zhou Dasen. Monomer recovery and nano-silica separation from biodegraded waste silicone rubber shed of composite insulator[J]. Frontiers in Materials, 2022, 9: 863731.[10] Li Chunnong, Cao Xianwu, Tong Yizhang, et al. Hybrid filler with nanoparticles grown in situ on the surface for the modification of thermal conductive and insulating silicone rubber[J]. ACS Applied Polymer Materials[J]. 2022, 4(10): 7152-7161.[11] Deng Hao, Yang Wenbin, Cai Tianyu, et al. Phase-change composites silicone rubber/paraffin@SiO2 microcapsules with different core/shell ratio for thermal management[J]. Internatio-nal Journal of Energy Research, 2021, 45(12): 18033-18047.[12] Cheng Zihao, Xu Wenzong, Ding Ding, et al. Preparation of boron nitride hybrid containing phosphorus and silicon and its effect on flame retardant, smoke suppression, and thermal conductivity properties of styrene-butadiene rubber[J]. Journal of Applied Polymer Science, 2022, 139(44): 53071.[13] Gungor A, Akbay I K, Ozdemir T. EPDM rubber with hexagonal boron nitride: A thermal neutron shielding composite[J]. Radiation Physics and Chemistry, 2019, 165: 108391.[14] Kemaloglu S, Ozkoc G, Aytac A. Properties of thermally conductive micro and nano size boron nitride reinforced silicon rubber composites[J]. Thermochimica Acta, 2010, 499(1/2): 40-47.[15] Ozdemir T, Yilmaz S N. Hexagonal boron nitride and polydimethylsiloxane: A ceramic rubber composite material for neutron shielding[J]. Radiation Physics and Chemistry, 2018, 152: 93-99.[16] Wu Ting, Qiu Jiedong, Xu Wenhua, et al. Efficient fabrication of flame-retarding silicone rubber/hydroxylated boron nitride nanocomposites based on volumetric extensional rheology[J]. Chemical Engineering Journal, 2022, 435: 135154.[17] Huang Pei, Xia Zhidong, Cui Song. 3 D printing of carbon fiber-filled conductive silicon rubber[J]. Materials & Design, 2018, 142: 11-21.[18] Kim Eung Soo, Lee Tea Hwa, Shin Sung Hyun, et al. Effect of Incorporation of carbon fiber and silicon carbide powder into silicone rubber on the ablation and mechanical properties of the silicone rubber-based ablation material[J]. Journal of Applied Polymer Science, 2011, 120(2): 831-838.[19] Gao Jinglong, Li Zhixuan, Li Jiayi, et al. Ablation behavior of silicone rubber-benzoxazine-based composites for ultra-high temperature applications[J]. Polymers, 2019, 11(11): 1844.[20] Liu Yanhui, Ma Chao, Li Yong, et al. Ablation and thermo-mechanical investigation of polyarylacetylene impregnated heat vulcanising silicone rubber for ultrahigh temperature applications[J]. Plastics Rubber and Composites, 2018, 47(5): 202-207.

备注/Memo

备注/Memo:
辽宁省教育厅高等学校基本科研项目(LJKMZ 20220586)。
更新日期/Last Update: 1900-01-01