|本期目录/Table of Contents|

[1]宗 鑫,高 波,李兰阁,等.不同抗氧剂对反式-1,4-丁二烯-异戊二烯共聚橡胶及其复合材料性能的影响[J].合成橡胶工业,2024,6:485-490.
 ZONG Xin,GAO Bo,LI Lan-ge,et al.Effect of different antioxidants on properties of trans-1,4-butadiene-isoprene rubber and its composites[J].China synthetic rubber industy,2024,6:485-490.
点击复制

不同抗氧剂对反式-1,4-丁二烯-异戊二烯共聚橡胶及其复合材料性能的影响(PDF)

《合成橡胶工业》[ISSN:1000-1255/CN:62-1036/TQ]

期数:
2024年6期
页码:
485-490
栏目:
出版日期:
1900-01-01

文章信息/Info

Title:
Effect of different antioxidants on properties of trans-1,4-butadiene-isoprene rubber and its composites
文章编号:
1000-1255(2024)06-0485-06
作者:
宗 鑫12高 波12李兰阁12葛怀涛12李丹丹2
1. 山东华聚高分子材料有限公司,山东 滨州256500; 2. 黄河三角洲京博化工研究院有限公司,山东 滨州256500
Author(s):
ZONG Xin12 GAO Bo12 LI Lan-ge12 GE Huai-tao12 LI Dan-dan2
1. Shandong Huaju Polymer Material Co Ltd, Binzhou 256500, China; 2. Chambroad Chemical Industry Research Institute Co Ltd, Binzhou 256500, China
关键词:
抗氧剂反式-14-丁二烯-异戊二烯共聚橡胶天然橡胶复合材料物理机械性能耐老化性能耐屈挠疲劳性能
Keywords:
antioxidant trans-14-poly(buta-diene-co-isoprene) copolymer rubber natural rubber composite physical and mechanical property aging resistance flexural fatigue resistance
分类号:
TQ 333.99
DOI:
DOI:10.19908/j.cnki.ISSN1000-1255.2024.06.0485
文献标识码:
A
摘要:
研究了3种抗氧剂对反式-1,4-丁二烯-异戊二烯共聚橡胶(TBIR)生胶耐老化性能、天然橡胶(NR)/TBIR混炼胶硫化特性和NR/TBIR硫化胶物理机械性能及耐屈挠疲劳性能的影响。结果表明,不同种类抗氧剂对TBIR生胶和NR/TBIR复合材料的防老化效果不同。含有不同抗氧剂的TBIR生胶的氧化诱导温度和氧化诱导时间不同,其中含有受阻酚类、对苯二胺类和亚磷酸酯类复合抗氧剂的TBIR生胶的氧化诱导温度最高、氧化诱导时间最长,其耐热氧老化性能最好。相较于NR混炼胶,不同NR/TBIR混炼胶的最小转矩均有不同程度的增大,焦烧时间延长,正硫化时间缩短,硫化速率加快,其中含有复合抗氧剂混炼胶的硫化速率较其他混炼胶更快。抗氧剂种类对NR/TBIR硫化胶的物理机械性能和常温耐屈挠疲劳性能无显著影响;相较于NR硫化胶,NR/TBIR硫化胶的拉伸强度、定伸应力和扯断伸长率均略降低,耐磨性能均显著提高,而滚动阻力则均显著降低;相较于NR硫化胶,除含有受阻酚类抗氧剂的NR/TBIR硫化胶外,其他硫化胶的老化系数均减小;相较于NR硫化胶,NR/TBIR硫化胶的常温疲劳寿命均显著延长,90 ℃时的高温疲劳寿命有不同程度的延长,其中仅含有受阻酚类抗氧剂硫化胶的疲劳寿命最长;100 ℃老化48 h后仅含有受阻酚类抗氧剂NR/TBIR硫化胶的六级疲劳寿命显著延长,而其他NR/TBIR硫化胶和NR硫化胶疲劳寿命基本保持不变。综合而言,受阻酚类抗氧剂对NR/TBIR硫化胶具有较好的热氧老化防护作用。
Abstract:
The effects of three antioxidants on aging properties of raw trans-1,4-poly(butadiene-co-isoprene) copolymer rubber (TBIR), curing characteristics of natural rubber (NR)/TBIR rubber compounds, and physical and mechanical properties and flexural fatigue resistance of NR/TBIR vulcanizates were studied. The results showed that different types of antioxidants had different anti-aging effects on raw TBIR and NR/TBIR composites. The oxidation induction temperature and oxidation induction time of raw TBIR containing different antioxidants were different, and the oxidation induction temperature was the highest of raw TBIR containing hindered phenolic, p-phenylenediamine and phosphite composite antioxidant and the oxidation induction time was the longest, and the thermal-oxidative aging resistance was the best. Compared with NR compound, the minimum torque of different NR/TBIR compounds all increased to varying degrees, the scorch time were prolonged, the vulcanization time were shor-tened and the vulcanization rate were accelerated, and the vulcanization rate of the compound contai-ning composite antioxidant was faster than that of the other NR/TBIR compounds. The types of antioxidants had no significant effect on the physical and mechanical properties and room-temperature flexural fatigue resistance of NR/TBIR vulcanizates. Compared with the NR vulcanizate, the tensile strength, modulus, and elongation at break of the NR/TBIR vulcanizates were slightly lower, the abrasion resistance was significantly improved, while the rolling resistance was significantly reduced; compared with NR vulcanizate, except for NR/TBIR vulcanizate containing hindered phenolic antioxidant, the aging coefficients of the other vulcanizates all reduced; compared with NR vulcanizate, the room temperature fatigue life of NR/TBIR vulcanizates were significantly prolonged and the high-temperature fatigue life at 90 ℃ all extended to varying degrees, and the vulcanizate containing only hindered phenolic antioxidant had the longest fatigue life; after aging at 100 ℃ for 48 h, the grade 6 fatigue life of NR/TBIR vulcanizate containing only hindered phenolic antioxidant was significantly prolonged, while the fatigue life of the other NR/TBIR vulcanizates and NR vulcanizate remained basically unchanged. Overall, hindered phenolic antioxidant had a good thermal-oxidative aging protection effect on NR/TBIR vulcanizate.

参考文献/References

[1] 杨清芝. 实用橡胶工艺学[M]. 北京: 化学工业出版社, 2005: 112-113.[2] 贺爱华, 姚薇, 黄宝琛, 等. 负载钛催化合成高反式丁二烯-异戊二烯共聚物的序列分布[J]. 化学学报, 2001, 59(10): 1793-1797.[3] 贺爱华, 姚微, 贾志峰, 等. 负载钛系催化剂催化合成高反式丁二烯-异戊二烯共聚物[J]. 高分子学报, 2002, 33(1): 19-24.[4] He Aihua, Huang Baochen, Jiao Shuke, et al. Synthesis of a high trans-1,4-butadiene/isoprene copolymers with supported titanium catalysts[J]. Journal of Applied Polymer Science, 2003, 89(7): 1800-1807.[5] Niu Qingtao, Zou Chen, Liu Xiangyu, et al. Isothermal crystallization fractionation and fraction characterization of trans-1,4-poly(isoprene-co-butadiene)[J]. Polymer, 2017, 109: 197-204.[6] He Aihua, Yao Wei, Huang Baochen, et al. Properties of a new synthetic rubber: High trans-1,4-poly(butadiene-co-isoprene) rubber[J]. Journal of Applied Polymer Science, 2004, 92: 2941-2948.[7] Shao Huafeng, Ren Shuting, Wang Riguo, et al. Temperature rising elution fractionation and fraction characterization of trans-poly(isoprene-co-butadiene)[J]. Polymer, 2020, 186(9): 1-7.[8] Li Hongyu, Zong Xin, Li Ning, et al. Influences of crosslin-kable crystalline copolymer on the polymer network and filler dispersion of NR/ESBR/CB nanocomposites[J]. Composites (Part A): Applied Science and Manufacturing, 2021, 140: 106194.[9] Zong Xin, Wang Shuo, Li Ning, et.al. Regulation effects of trans-1,4-poly(isoprene-co-butadiene) copolymer on the processability, aggregation structure and properties of chloroprene rubber[J]. Polymer, 2021, 213: 123325.[10] 王浩, 邹陈, 贺爱华, 等. 高反式-1,4-丁二烯-异戊二烯共聚橡胶的结构表征及其在轿车轮胎子口护胶中的应用研究[J]. 高分子学报, 2015, 46(12): 1387-1395.[11] Zhang Xinping, Cui Honghong, Song Liyuan, et al. Elastomer nanocomposites with superior dynamic mechanical properties via trans-1,4-poly(butadiene-co-isoprene) incorporation[J]. Composites Science and Technology, 2018, 158: 156-163.[12] Wang Hao, Zhang Xinping, Nie Huarong, et al. Multi-block copolymer as reactive multifunctional compatibilizer for NR/BR blends with desired network structures and dynamical properties: Compatibility, co-vulcanization and filler dispersion[J]. Composites(Part A): Applied Science and Manufacturing, 2018, 116: 197-205.[13] 王浩, 宋丽媛, 马韵升, 等. 反式-1,4-丁二烯-异戊二烯共聚橡胶改性的高性能轿车轮胎胎面胶的结构与性能[J]. 高分子学报, 2018, 49(3): 419-427.[14] 宗鑫, 蔡磊, 李宁, 等. TBIR改性氯丁橡胶的结构与性能研究[J]. 高分子通报, 2021, 34(1): 28-36.[15] Li Ning, Zong Xin, Li Hongyu, et al. Aging behaviors of trans-1,4-poly(isoprene-co-butadiene) copolymer rubber[J]. Polymer Degradation and Stability, 2021, 183: 109456.

备注/Memo

备注/Memo:
国家重点研发计划项目(SQ 2022 YFB 3700063);山东省重大科技创新工程项目(2021 CXGC 010901)。
更新日期/Last Update: 1900-01-01