|本期目录/Table of Contents|

[1]苏禹豪,李云龙?鄢,王世杰,等.不同纤维增强丁腈橡胶性能的分子动力学对比研究[J].合成橡胶工业,2024,6:470-475.
 SU Yu-hao,LI Yun-long,WANG Shi-jie,et al.Molecular dynamics comparative study on properties of different fiber-reinforced nitrile rubbers[J].China synthetic rubber industy,2024,6:470-475.
点击复制

不同纤维增强丁腈橡胶性能的分子动力学对比研究(PDF)

《合成橡胶工业》[ISSN:1000-1255/CN:62-1036/TQ]

期数:
2024年6期
页码:
470-475
栏目:
出版日期:
1900-01-01

文章信息/Info

Title:
Molecular dynamics comparative study on properties of different fiber-reinforced nitrile rubbers
文章编号:
1000-1255(2024)06-0470-06
作者:
苏禹豪1李云龙1?鄢王世杰1聂 瑞2
1. 沈阳工业大学 机械工程学院,沈阳 110807; 2. 北京航空航天大学 宁波创新研究院,浙江 宁波 315800
Author(s):
SU Yu-hao1 LI Yun-long1 WANG Shi-jie1 NIE Rui2
1. School of Mechanical Engineering, Shenyang University of Technology, Shenyang 110870, China; 2. Ningbo Institute of Technology, Beihang University, Ningbo 315800, China
关键词:
纤维丁腈橡胶增强分子动力学模拟力学性能界面结合性能
Keywords:
fiber nitrile rubber reinforcement molecular dynamics simulation mechanical property interfacial bonding performance
分类号:
TQ 333.7
DOI:
DOI:10.19908/j.cnki.ISSN1000-1255.2024.06.0470
文献标识码:
A
摘要:
使用分子动力学模拟构建了纤维表面模型和复合材料模型,通过纤维拔出模拟和横向拉伸模拟对复合材料界面结合性能和力学性能进行测试,从微观角度分析了不同纤维与丁腈橡胶(NBR)基体的界面作用,比较了玻璃纤维(GF)、玄武岩纤维(BF)和聚乙烯纤维(PE)对NBR基体的增强效果,探讨了影响界面结合性能的作用机制。结果表明,GF与NBR基质间表现出最强的界面相互作用,在拔出过程中GF可吸附最多的NBR分子链,其次是BF,但二者之间差异不大,而PE与NBR间的界面相互作用最弱,通过添加GF可解决复合材料抗撕裂性能不足的问题;对于BF/NBR复合材料而言,BF自身的高强度可以更好地增强复合材料在纤维方向上的力学性能,在工程应用中可将BF沿外力方向排列,从而增强复合材料抵抗变形失效的能力。
Abstract:
Fiber surface model and composite model were constructed by molecular dynamics si-mulation, the interfacial bonding performance and mechanical properties of the composites were tested by fiber pull-out simulation and transverse tensile simulation, the interfacial interaction between diffe-rent fibers and nitrile rubber (NBR) matrix was analyzed from a microscopic perspective, the reinforcement effects of glass fiber (GF), basalt fiber (BF) and polyethylene fiber (PE) on the NBR matrix were compared, and the mechanism affecting the interface bonding performance was discussed. The results indicated that the interfacial interaction between GF and NBR matrix was the strongest, and GF could adsorb the most NBR molecular chains during the pull-out process, followed by BF, but there was little difference between GF and BF, while the interfacial interaction between PE and NBR matrix was the wea-kest, and the problem of insufficient tear resistance of the composites could be solved by the addition of GF. For BF/NBR composite, the higher strength of BF itself could better enhance the mechanical pro-perties of the composite in the fiber direction, and in engineering applications, BF could be arranged along the direction of external force to enhance the ability of the composite to resist deformation failure.

参考文献/References

[1] Ji Longcheng, Chen Lijia, Li Lin, et al. Mechanical properties of amide functionalized CNT/NBR at different temperatures: A molecular dynamics study[J]. Polymers, 2022, 14(7): 14071307.[2] Cui Jianzheng, Zhao Jing, Wang Shijie, et al. A comparative study on enhancement of mechanical and tribological properties of nitrile rubber composites reinforced by different functiona-lized graphene sheets: Molecular dynamics simulations[J]. Polymer Composites, 2021, 42(1): 205-219.[3] Wang Zhengzhi, Gu Ping, Zhang Zhong. Indentation and scratch behavior of nano-SiO2 /polycarbonate composite coating at the micro/nano-scale[J]. Wear, 2010, 269(1/2): 21-25.[4] Xie Jun, Chen Ke, Yan Meng, et al. Effect of temperature and water penetration on the interfacial bond between epoxy resin and glass fiber: A molecular dynamics study[J]. Journal of Molecular Liquids, 2022, 350: 118424.[5] Zhang Muhan, Jiang Bingyan, Chen Chao, et al. The effect of temperature and strain rate on the interfacial behavior of glass fiber reinforced polypropylene composites: A molecular dynamics study[J]. Polymers, 2019, 11(11): 11111766.[6] Jin Zuquan, Li Shicai, Song Huamiao, et al. Experimental and simulative study of bonding properties on fiber/epoxy interfaces by digital image correlation(DIC) technique and molecular dynamics[J]. Cement and Concrete Composites, 2022, 131: 104569.[7] Luo Nan, Zhong Hui, Yang Min, et al. Modifying glass fiber surface with grafting acrylamide by UV-grafting copolymerization for preparation of glass fiber reinforced PVDF composite membrane[J]. Journal of Environmental Sciences, 2016, 39: 208-217.[8] Lu Chunrui, Qiu Si, Lu Xue, et al. Enhancing the interfacial strength of carbon fiber/poly(ether ether ketone) hybrid compo-sites by plasma treatments[J]. Polymers, 2019, 11(5): 11050753.[9] Chowdhury S C, Prosser R, Sirk T W, et al. Glass fiber-epoxy interactions in the presence of silane: A molecular dynamics study[J]. Applied Surface Science, 2020, 542: 148738.[10] Pan Lei, Guo Huaxin, Zhong Lang, et al. Influence of surface-modified glass fibers on interfacial properties of GF/PEEK composites using molecular dynamics[J]. Computational Materials Science, 2021, 188: 110216.[11] Song You, Lan Zhenbo, Deng Jiangang, et al. Enhanced interfacial properties of carbon nanomaterial-coated glass fiber-reinforced epoxy composite: A molecular dynamics study[J]. Frontiers in Materials, 2022, 8: 828001.[12] Lu Zeyu, Yin Ran, Yao Jie, et al. Surface modification of polyethylene fiber by ozonation and its influence on the mechanical properties of strain-hardening cementitious composites[J]. Composites (Part B): Engineering, 2019, 177: 107446.[13] Li Zhi, Zhang Wei, Wang Xinwei, et al. Surface modification of ultra high molecular weight polyethylene fibers via the sequential photoinduced graft polymerization[J]. Applied Surface Science, 2011, 257(17): 7600-7608.[14] Lu Zeyu, Yao Jie, Leung C K Y. Using graphene oxide to strengthen the bond between PE fiber and matrix to improve the strain hardening behavior of SHCC[J]. Cement and Concrete Research, 2019, 126: 105899.[15] Guan Xiwen, Wu Jiaqi, Hernandez A G, et al. Molecular dynamic simulations of interfacial interaction mechanism between the NASH gels and the polyethene fibre[J]. Construction and Building Materials, 2022, 349: 128769.[16] Cao Peng, Tang Changbing, Liu Zai, et al. Study on fracture behaviour of basalt fibre reinforced asphalt concrete with plastic coupled cohesive model and enhanced virtual crack closure technique model[J]. International Journal of Pavement Engineering, 2023, 24(2): 2080830.[17] Zhou Shuai, Vu-Bac N, Arash B, et al. Interface characterization between polyethylene/silica in engineered cementitious composites by molecular dynamics simulation[J]. Molecules, 2019, 24(8): 1497.[18] Hou Dongshuai, Li Tao. Influence of aluminates on the structure and dynamics of water and ions in the nanometer channel of calcium silicate hydrate (C-S-H) gel[J]. Physical Chemistry Chemical Physics, 2018, 20(4): 2373-2387.[19] 郝强强, 邵水源, 梁姣利, 等. 短切玻璃纤维/丁腈橡胶复合材料的耐磨性能[J]. 合成橡胶工业, 2017, 40(4):311-314.[20] Wang Hao, Jin Kai, Wang Chen, et al. Effect of fiber surface functionalization on shear behavior at carbon fiber/epoxy interface through molecular dynamics analysis[J]. Composites (Part A): Applied Science and Manufacturing, 2019, 126: 105611.[21] Li Yunlong, Wang Shijie, Wang Quan, et al. A comparison study on mechanical properties of polymer composites reinforced by carbon nanotubes and graphene sheet[J]. Composites (Part B): Engineering, 2018, 133: 35-41.[22] 唐黎明, 李云龙, 何恩球, 等. 分子模拟纳米ZnO/丁腈橡胶复合材料的摩擦学行为[J]. 复合材料学报, 2020, 37(3): 690-695.[23] Li Yunlong, Wang Shijie, Wang Quan. A molecular dynamics simulation study on enhancement of mechanical and tribological properties of polymer composites by introduction of graphene[J]. Carbon, 2017, 111: 538-545.[24] 崔剑征. 官能化碳纳米/聚合物复合材料摩擦性能分子动力学研究[D]. 沈阳: 沈阳工业大学, 2021.[25] 陈诗瑶, 赵晶, 王世杰, 等. 不同直径单壁碳纳米管增强丁腈橡胶/聚氯乙烯复合体系的分子动力学模拟[J]. 合成橡胶工业, 2021, 44(6): 449-454.[26] Yang Bin, Wang Shijie, Li Yunlong, et al. Molecular dyna-mics simulations of mechanical properties of swollen nitrile rubber composites by incorporating carbon nanotubes[J]. Polymer Composites, 2020, 41(8): 3160-3169.

备注/Memo

备注/Memo:
辽宁省科技厅应用基础研究计划项目(青年专项)(2023 JH 2/101600065);国家自然科学基金资助项目(52105062,51903148);广东省基础与应用基础研究基金资助项目(2021 A 1515012273);北京航空航天大学宁波创新研究院青年基金资助项目(NBQN 202106002)。
更新日期/Last Update: 1900-01-01