|本期目录/Table of Contents|

[1]田永静 a,王宇航 a,茆一鸣 b?鄢.低温等离子体活化氯丁橡胶和乙烯-乙酸乙烯酯共聚物及其复配改性沥青的性能[J].合成橡胶工业,2024,5:421-427.
 TIAN Yong-jing a,WANG Yu-hang a,MAO Yi-ming b,et al.Low-temperature plasma activated chloroprene rubber and ethylene-vinyl acetate copolymer and their compound modified asphalt performance[J].China synthetic rubber industy,2024,5:421-427.
点击复制

低温等离子体活化氯丁橡胶和乙烯-乙酸乙烯酯共聚物及其复配改性沥青的性能(PDF)

《合成橡胶工业》[ISSN:1000-1255/CN:62-1036/TQ]

期数:
2024年5期
页码:
421-427
栏目:
出版日期:
2024-09-15

文章信息/Info

Title:
Low-temperature plasma activated chloroprene rubber and ethylene-vinyl acetate copolymer and their compound modified asphalt performance
文章编号:
1000-1255(2024)05-0421-07
作者:
田永静1 a王宇航1 a茆一鸣1 b2?鄢
(1. 苏州科技大学 a. 环境科学与工程学院,b. 江苏省生态道路技术产业化工程研究中心,江苏 苏州 215009;2. 苏州市建设工程质量检测中心有限公司,江苏 苏州 215000)
Author(s):
TIAN Yong-jing1 a WANG Yu-hang1 a MAO Yi-ming1 b 2
(1. a. School of Environmental Science and Engineering, b. Jiangsu Ecological Road Technology Industrialization Engineering Research Center, Suzhou University of Science and Technology, Suzhou 215009, China; 2. Suzhou Construction Engineering Quality Inspection Center Co Ltd, Suzhou 215000, China)
关键词:
改性沥青低温等离子体氯丁橡胶乙烯-乙酸乙烯酯共聚物路用性能微观机理
Keywords:
modified asphalt low-temperature plasma chloroprene rubber ethylene-vinyl acetate copolymer road performance microscopic mechanism
分类号:
U 416.25
DOI:
DOI:10.19908/j.cnki.ISSN1000-1255.2024.05.0421
文献标识码:
B
摘要:
为提升胶粉改性沥青的性能,以与基质沥青质量比为11/100的氯丁橡胶(CR)和3/100的乙烯-乙酸乙烯酯共聚物(EVA)为改性剂制备了改性沥青,采用低温等离子体活化CR/EVA以进一步提升复配改性沥青的性能,研究了单一改性、复配改性和低温等离子体活化复配改性沥青(A-CR/EVA-MA)的路用性能,并使用扫描电子显微镜、原子力显微镜和傅里叶变换红外光谱分析了各改性沥青的微观机理。结果表明,各改性沥青的路用性能均有提升,总体表现为活化复配改性优于复配改性和单一改性;A-CR/EVA-MA的针入度、软化点、延度、布氏黏度及抗车辙因子较基质沥青分别提升了46%、47%、95%、253%和278%,存储稳定性也得到了进一步提高;低温等离子体活化技术增加了改性剂的比表面积和表面官能团含量,提高了改性剂对沥青中轻质组分的吸附能力,促进了CR和EVA与沥青的紧密结合,有效提升了改性沥青的路用性能。
Abstract:
In order to improve the performance of crumb rubber modified asphalt, chloroprene rubber (CR) with a mass ratio of 11/100 to matrix asphalt and ethylene-vinyl acetate copolymer (EVA) with a mass ratio of 3/100 were used as modifiers to prepare modified asphalt. CR/EVA was activated by low-temperature plasma to further improve the performance of compound modified asphalt. The road performance of single modified, compound modified and low-temperature plasma activated compound modified asphalt (A-CR/EVA-MA) were studied. The microscopic mechanism of each modified asphalt was analyzed by scanning electron microscopy, atomic force microscopy and Fourier transform infrared spectroscopy. The results showed that the road performance of each modified asphalt was improved, and the overall performance of the activation modification system was better than those of compound modification and the single modification system. The penetration, softening point, ductility, Brookfield viscosity and anti-rutting factor of A-CR/EVA-MA increased by 46%, 47%, 94%, 253%, and 278% respectively compared to the matrix asphalt, and the storage stability was also further improved. The low-temperature plasma activation technology increased the specific surface area and surface functional group content of the modifier, improved the adsorption capacity of the modifier to the light components in the asphalt, promoted the close combination of CR, EVA and asphalt, and improved effectively the road performance of the modified asphalt.

参考文献/References

[1] 马涛, 陈葱琳, 张阳, 等. 胶粉应用于沥青改性技术的发展综述[J]. 中国公路学报, 2021, 34(10): 1-16.[2] Kumanda A, Avdar E, Oru E, et al. Effect of WCO addition on high and low-temperature performance of RET modified bitumen[J]. Construction and Building Materials, 2022, 323: 126561.[3] Yang Qilin, Yue Qian, Fan Zepeng, et al. Exploiting the synergetic effects of graphene and carbon nanotubes on the mechanical properties of bitumen composites[J]. Carbon, 2021, 172:402-413.[4] 马庆伟, 李艳, 邱业绩, 等. 不同老化条件下纳米材料复配胶粉改性沥青的流变特性[J]. 重庆交通大学学报(自然科学版), 2022, 41(2): 109-115.[5] He Wentao, Zhao Zifeng, Yuan Jie, et al. Recent development of ethylene-vinyl acetate modified asphalt[J]. Construction and Building Materials, 2023, 363: 129800.[6] 刘文昌, 党涛, 梁慧, 等. 胶粉活化对橡胶沥青性能的影响研究进展[J]. 市政技术, 2022, 40(9): 39-44.[7] 姚圣磊, 陈军, 刘继, 等. 等离子体微表处理后胶粉改性沥青高温性能研究[J]. 交通科技, 2018(1): 91-93.[8] 宋国林, 张泽, 沈成柱, 等. 低温等离子体改性碳纳米管对再生沥青性能的影响[J]. 材料导报, 2020, 34(2): 2052-2057.[9] Yan Kezhen, Chen Jinghao, You Lingyun, et al. Characteristics of compound aphalt modified by waste tire rubber (WTR) and ethylene vinyl acetate (EVA): Conventional, rheological, and microstructural properties[J]. Journal of Cleaner Production, 2020, 258: 120732.[10] 锁利军. 橡胶粉/SBS复合改性沥青胶结料的制备与性能研究[J]. 功能材料, 2022, 53(6): 6224-6229.[11] 贾彦. CR/SBS复合改性沥青制备与性能研究[D]. 西安: 长安大学, 2019.[12] 曹学禹, 李文凯, 邵景, 等. TiO2/ZnO-BF复合改性沥青及混合料性能研究[J]. 公路交通科技, 2023, 40(4): 38-45.[13] 王铁宝, 王晓东, 董允, 等. 稳定剂对SBS/EVA复配改性沥青性能影响的研究[J]. 河北工业大学学报, 2008(1): 13-17.[14] 于凯, 王欢, 韩赫兴, 等. 双氧水氧化废轮胎胶粉在改性沥青中的应用[J]. 天津大学学报(自然科学与工程技术版), 2014, 47(11): 949-954.[15] 宋莉芳, 张婷, 乔云雁, 等. 高锰酸钾氧化废轮胎胶粉对橡胶沥青性能的影响[J]. 材料科学与工程学报, 2018, 36(5): 795-799.[16] Yu Ruien, Liu Xiaolong, Zhang Maorong, et al. Dynamic stability of ethylene-vinyl acetate copolymer/crumb rubber modified asphalt[J]. Construction and Building Materials, 2017, 156: 284-292.[17] Presti D L. Recycled tyre rubber modified bitumens for road asphalt mixtures: A literature review[J]. Construction and Buil-ding Materials, 2013, 49(6): 863-881.[18] 单丽岩, 张恩浩, 刘爽, 等. 基于原子力显微镜的沥青微观损伤机理分析[J]. 中国公路学报, 2020, 33(10): 171-177.[19] 尤凤兵, 田永静, 沈菊男, 等. 低温等离子体活化胶粉改性沥青的性能[J]. 环境工程学报, 2017, 11(2): 1080-1086.[20] Liang Ming, Xin Xue, Fan Weiyu, et al. Experimental and si-mulation study of phase microstructure and storage stability of asphalt modified with ethylene-vinyl Acetate[J]. Journal of Materials in Civil Engineering, 2019, 31(12): 04019288.

备注/Memo

备注/Memo:
国家自然科学基金资助项目(51378328)。
更新日期/Last Update: 1900-01-01