[1] 顾建. 橡胶挤出设备工艺问题分析及解决措施[J]. 轮胎工业, 2018, 38(10): 621-623.[2] 李章学. 热空气硫化硅橡胶电缆的起泡原因及控制技术分析[J]. 橡胶科技, 2019, 17(8): 443-446.[3] Wang Xinyu, Wang Wei. Numerical simulation and experimental study on dynamic heat build-up of rubber[J]. Acta Polymerica Sinica, 2021, 52(7): 787-795.[4] Li Wenbo, Zhang Xiaojie, Shang Yuanyuan, et al. Investigation of dynamic heat generation and transfer behavior and energy dissipation for nonlinear synchronous belt transmission[J]. Applied Thermal Engineering, 2018, 144: 457-468.[5] Liang Ming, Xin Xue, Fan Weiyu, et al. Thermo-stability and aging performance of modified asphalt with crumb rubber activated by microwave and TOR[J]. Materials & Design, 2017, 127: 84-96.[6] Jian Ranran, Yang Weimin, Xie Pengcheng, et al. Enhancing a multi-field-synergy process for polymer composite plasticization: A novel design concept for screw to facilitate phase-to-phase thermal and molecular mobility[J]. Applied Thermal Engineering, 2020, 164: 114448.[7] 鉴冉冉, 谢鹏程, 杨卫民. 基于场协同原理的聚合物塑化过程数值分析[J]. 工程热物理学报, 2017, 38(2): 281-288.[8] 瞿金平. 塑料加工成型机械创新技术研究[J]. 机电工程技术, 2013, 42(1): 1-7.[9] 许智玲. 塑料加工成型机械创新技术分析[J]. 现代工业经济和信息化, 2019, 9(11): 25-26.[10] 张震. 氟硅橡胶混炼工艺与最后加工设备的匹配分析[J]. 现代制造技术与装备, 2020,56(2): 141-143.[11] Silva A, Silva F J G, Campilho R, et al. A new approach to temperature control in the extrusion process of composite tire products[J]. Journal of Manufacturing Processes, 2021, 65: 80-96.[12] Talib N A, Ertunc O, Turkistanli T, et al. Experimental and numerical study of rubber flow in the extrusion die of a weather strip[J]. Journal of Chemical Engineering of Japan, 2019, 52(12): 867-876.[13] Ramini M, Agnelli S. Shear heating parameter of rubber compouds useful for process control in injection molding machine[J]. Rubber Chemistry and Technology, 2020, 93(4): 729-737.[14] Walter A P, Rodney K W. 双螺杆挤出机在弹性体连续加工中的改进[J]. 田秀玲,译. 橡塑技术与装备, 2001,27(6): 17-20.[15] Trifkovic M, Sheikhzadeh M, Choo K, et al. Model identification of a twin screw extruder for thermoplastic vulcanizate (TPV) applications[J]. Polymer Engineering and Science, 2010, 50(6): 1168-1177.[16] Milani G, Milani F. Optimization of extrusion production lines for EPDM rubber vulcanized with sulphur: A two-phase model based on finite elements and kinetic second order differential equation[J]. Computers & Chemical Engineering, 2012, 43: 173-190.[17] Nemoto T, Takagi J, Ohshima M. Nanoscale cellular foams from a poly(propylene)-rubber blend[J]. Macromolecular Materials and Engineering, 2008, 293(12): 991-998.[18] 李志华. 高效传热销钉螺杆的设计分析[J]. 青岛化工学院学报, 1997,18(1): 83-85.[19] 陈紫薇. 热管技术在挤出机机筒传热中的应用与性能研究[D]. 大连: 大连理工大学, 2016.[20] 李庆领. 聚合物在挤出加工过程中的传热及流动特性研究[D]. 武汉: 华中科技大学, 2004.[21] 李庆领, 刘炳成, 张学伟, 等. 聚合物在挤出加工过程中的传热特性研究[J]. 青岛科技大学学报(自然科学版), 2004,25(6): 510-512.[22] 周贵斌, 李庆领. 强化传热技术在挤出机温控系统中的应用[J]. 橡塑技术与装备, 2005,31(7): 6-9.[23] 周贵斌. 混炼胶在挤出加工过程中的流动和传热特性研究[D]. 青岛: 青岛科技大学, 2005.[24] 陈佳兴, 李子然. 单螺杆橡胶挤出机三维非等温流动数值模拟[J]. 材料科学与工艺, 2018, 26(1): 62-68.[25] 李汉堂. 挤出机和注射成型机螺杆挤出部位的热控制和胶料流动[J]. 世界橡胶工业, 2016, 43(7): 32-39.[26] Guo Zengyuan, Li Deyu, Wang Buxuan. A novel concept for convective heat transfer enhancement[J]. International Journal of Heat and Mass Transfer, 1998, 41(14): 2221-2225.[27] Guo Zengyuan, Tao Wenquan, Shah R K. The field synergy (coordination) principle and its applications in enhancing single phase convective heat transfer[J]. International Journal of Heat and Mass Transfer, 2005, 48(9): 1797-1807.[28] Guo Jiangfeng, Huai Xiulan. Numerical investigation of helically coiled tube from the viewpoint of field synergy principle[J]. Applied Thermal Engineering, 2016, 98: 137-143.[29] Cui Xinying, Guo Jiangfeng, Huai Xiulan, et al. Numerical study on novel airfoil fins for printed circuit heat exchanger using supercritical CO2[J]. International Journal of Heat and Mass Transfer, 2018, 121: 354-366.[30] Liu Wei, Liu Peng, Wang Junbo, et al. Exergy destruction minimization: A principle to convective heat transfer enhancement[J]. International Journal of Heat and Mass Transfer, 2018, 122: 11-21.[31] Sun Yue, Lin Guiping, Yu Jia, et al. Theoretical investigation of natural convection heat transfer in inclined and fully divided CO2 enclosures on Mars[J]. International Journal of Heat and Mass Transfer, 2018, 126(Part B): 1113-1122.[32] Wu Ching-chi, Chen ■-kuang, Yang Yue-tzu, et al. Numerical simulation of turbulent flow forced convection in a twisted elliptical tube[J]. International Journal of Thermal Sciences, 2018, 132: 199-208.[33] Li Fang, Zhu Wenhui, He Hu. Numerical optimization on microchannel flow and heat transfer performance based on field synergy principle[J]. International Journal of Heat and Mass Transfer, 2019, 130: 375-385.[34] 刘伟, 刘志春, 过增元. 对流换热层流流场的物理量协同与传热强化分析[J]. 科学通报, 2009, 54(12): 1779-1785.[35] 刘伟, 刘志春, 黄素逸. 湍流换热的场物理量协同与传热强化分析[J]. 科学通报, 2010, 55(3): 281-288.[36] 何雅玲, 雷勇刚, 田丽亭, 等. 高效低阻强化换热技术的三场协同性探讨[J]. 工程热物理学报, 2009, 30(11): 1904-1906.[37] 陈群, 任建勋, 过增元. 流体流动场协同原理及其在减阻中的应用[J]. 科学通报, 2008,53(4): 489-492.[38] 顾国锋, 郭平生. 运动流体强化传热的实现条件[J]. 广西物理, 2006,27(1): 12-15.[39] 杨志超, 杨臧健, 钟英杰. 场协同理论及其在脉动流传热技术中的应用前景[J]. 机电工程, 2013, 30(4): 435-438.[40] 吴明, 何雅玲, 陶文铨, 等. 场协同理论在脉管制冷机研究中的推广[J]. 工程热物理学报, 2002,23(4): 488-490.[41] 陶文铨, 何雅玲. 场协同原理: 它的科学之美及与■的关系[J]. 中国科学: 技术科学, 2021, 51(10): 1155-1165.[42] He Yaling, Wu Ming, Tao Wenquan, et al. Improvement of the thermal performance of pulse tube refrigerator by using a ge-neral principle for enhancing energy transport and conversion processes[J]. Applied Thermal Engineering, 2004, 24(1): 79-93.[43] Guo Jiangfeng, Xu Mingtian, Cheng Lin. Numerical investigations of curved square channel from the viewpoint of field sy-nergy principle[J]. International Journal of Heat and Mass Transfer, 2011, 54(17/18): 4148-4151.[44] Yu Zhiqiang, Wang Peng, Zhou Wenjing, et al. Study on the consistency between field synergy principle and entransy dissipation extremum principle[J]. International Journal of Heat and Mass Transfer, 2018, 116: 621-634.[45] Zhao Xiaohuan, E Jiaqiang, Zhang Zhiqing, et al. A review on heat enhancement in thermal energy conversion and management using field synergy principle[J]. Applied Energy, 2020, 257: 113995.[46] Jian Ranran, Yang Weimin, Cheng Lisheng, et al. Numerical analysis of enhanced heat transfer by incorporating torsion elements in the homogenizing section of polymer plasticization with the field synergy principle[J]. International Journal of Heat and Mass Transfer, 2017, 115(Part A): 946-953.[47] Jian Ranran, Dai Rui, Sain M, et al. Ductile behavior and heat transfer efficiency in polymer extrusion by self-controlled “flipping melt-pancakes” with multi-fields synergy[J]. International Journal of Heat and Mass Transfer, 2022, 186: 122517.[48] Jian Ranran, Dai Rui, Sain M, et al. A strategy of stretching melt to a thin layer: Self-controlled “stretching melt-pancakes” to enhance heat transfer and mixing during polymer extrusion[J]. Applied Thermal Engineering, 2023, 224: 120090.