|本期目录/Table of Contents|

[1]潘 威,黄士争,Sain Mohini,等.橡胶挤出加工过程中热管理问题研究进展[J].合成橡胶工业,2024,3:270-274.
 PAN Wei,HUANG Shi-zheng,Sain Mohini,et al.Research progress in thermal management issues in rubber extrusion process[J].China synthetic rubber industy,2024,3:270-274.
点击复制

橡胶挤出加工过程中热管理问题研究进展(PDF)

《合成橡胶工业》[ISSN:1000-1255/CN:62-1036/TQ]

期数:
2024年3期
页码:
270-274
栏目:
出版日期:
2024-05-15

文章信息/Info

Title:
Research progress in thermal management issues in rubber extrusion process
文章编号:
1000-1255(2024)03-0270-05
作者:
潘 威1黄士争1Sain Mohini2杨卫民3曾宪奎1鉴冉冉12?鄢
(1. 青岛科技大学 机电工程学院,山东 青岛 266061; 2. 加拿大多伦多大学 机械与工业工程系/生物复合材料及生物质材料加工中心,安大略省 多伦多 M5S 3B3; 3. 北京化工大学 机电工程学院,北京 100029)
Author(s):
PAN Wei1 HUANG Shi-zheng1 Sain Mohini2 YANG Wei-min3 ZENG Xian-kui1 JIAN Ran-ran12
(1. College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China; 2. Department of Mechanical and Industrial Engineering/Centre for Biocomposites and Biomaterials Processing, University of Toronto, Toronto, ON M5S 3B3, Canada; 3. College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China)
关键词:
橡胶加工挤出成型传热传质精确控温场协同原理综述
Keywords:
rubber processing extrusion mol-ding heat and mass transfer precise temperature control field synergy principle review
分类号:
TQ 330.6+6
DOI:
DOI:10.19908/j.cnki.ISSN1000-1255.2024.03.0270
文献标识码:
A
摘要:
分析了橡胶挤出过程中热问题产生的原因及不利影响,从螺杆结构优化、外部冷却和内部传热强化及场协同原理在强化传热领域的应用等方面综述了近年来国内外橡胶挤出加工过程中热管理的研究现状,对橡胶挤出加工过程中热管理的发展方向进行了展望。
Abstract:
The causes and adverse effects of thermal problems in the polymer rubber extrusion process were analyzed, the current research status of thermal management in rubber extrusion at home and abroad in recent years were summarized from the aspects of screw structure optimization, external coo-ling improvement, internal heat transfer enhancement and application of field synergy principle on heat transfer enhancement with 48 references, and prospects were made for the development direction of thermal management in rubber extrusion.

参考文献/References

[1] 顾建. 橡胶挤出设备工艺问题分析及解决措施[J]. 轮胎工业, 2018, 38(10): 621-623.[2] 李章学. 热空气硫化硅橡胶电缆的起泡原因及控制技术分析[J]. 橡胶科技, 2019, 17(8): 443-446.[3] Wang Xinyu, Wang Wei. Numerical simulation and experimental study on dynamic heat build-up of rubber[J]. Acta Polymerica Sinica, 2021, 52(7): 787-795.[4] Li Wenbo, Zhang Xiaojie, Shang Yuanyuan, et al. Investigation of dynamic heat generation and transfer behavior and energy dissipation for nonlinear synchronous belt transmission[J]. Applied Thermal Engineering, 2018, 144: 457-468.[5] Liang Ming, Xin Xue, Fan Weiyu, et al. Thermo-stability and aging performance of modified asphalt with crumb rubber activated by microwave and TOR[J]. Materials & Design, 2017, 127: 84-96.[6] Jian Ranran, Yang Weimin, Xie Pengcheng, et al. Enhancing a multi-field-synergy process for polymer composite plasticization: A novel design concept for screw to facilitate phase-to-phase thermal and molecular mobility[J]. Applied Thermal Engineering, 2020, 164: 114448.[7] 鉴冉冉, 谢鹏程, 杨卫民. 基于场协同原理的聚合物塑化过程数值分析[J]. 工程热物理学报, 2017, 38(2): 281-288.[8] 瞿金平. 塑料加工成型机械创新技术研究[J]. 机电工程技术, 2013, 42(1): 1-7.[9] 许智玲. 塑料加工成型机械创新技术分析[J]. 现代工业经济和信息化, 2019, 9(11): 25-26.[10] 张震. 氟硅橡胶混炼工艺与最后加工设备的匹配分析[J]. 现代制造技术与装备, 2020,56(2): 141-143.[11] Silva A, Silva F J G, Campilho R, et al. A new approach to temperature control in the extrusion process of composite tire products[J]. Journal of Manufacturing Processes, 2021, 65: 80-96.[12] Talib N A, Ertunc O, Turkistanli T, et al. Experimental and numerical study of rubber flow in the extrusion die of a weather strip[J]. Journal of Chemical Engineering of Japan, 2019, 52(12): 867-876.[13] Ramini M, Agnelli S. Shear heating parameter of rubber compouds useful for process control in injection molding machine[J]. Rubber Chemistry and Technology, 2020, 93(4): 729-737.[14] Walter A P, Rodney K W. 双螺杆挤出机在弹性体连续加工中的改进[J]. 田秀玲,译. 橡塑技术与装备, 2001,27(6): 17-20.[15] Trifkovic M, Sheikhzadeh M, Choo K, et al. Model identification of a twin screw extruder for thermoplastic vulcanizate (TPV) applications[J]. Polymer Engineering and Science, 2010, 50(6): 1168-1177.[16] Milani G, Milani F. Optimization of extrusion production lines for EPDM rubber vulcanized with sulphur: A two-phase model based on finite elements and kinetic second order differential equation[J]. Computers & Chemical Engineering, 2012, 43: 173-190.[17] Nemoto T, Takagi J, Ohshima M. Nanoscale cellular foams from a poly(propylene)-rubber blend[J]. Macromolecular Materials and Engineering, 2008, 293(12): 991-998.[18] 李志华. 高效传热销钉螺杆的设计分析[J]. 青岛化工学院学报, 1997,18(1): 83-85.[19] 陈紫薇. 热管技术在挤出机机筒传热中的应用与性能研究[D]. 大连: 大连理工大学, 2016.[20] 李庆领. 聚合物在挤出加工过程中的传热及流动特性研究[D]. 武汉: 华中科技大学, 2004.[21] 李庆领, 刘炳成, 张学伟, 等. 聚合物在挤出加工过程中的传热特性研究[J]. 青岛科技大学学报(自然科学版), 2004,25(6): 510-512.[22] 周贵斌, 李庆领. 强化传热技术在挤出机温控系统中的应用[J]. 橡塑技术与装备, 2005,31(7): 6-9.[23] 周贵斌. 混炼胶在挤出加工过程中的流动和传热特性研究[D]. 青岛: 青岛科技大学, 2005.[24] 陈佳兴, 李子然. 单螺杆橡胶挤出机三维非等温流动数值模拟[J]. 材料科学与工艺, 2018, 26(1): 62-68.[25] 李汉堂. 挤出机和注射成型机螺杆挤出部位的热控制和胶料流动[J]. 世界橡胶工业, 2016, 43(7): 32-39.[26] Guo Zengyuan, Li Deyu, Wang Buxuan. A novel concept for convective heat transfer enhancement[J]. International Journal of Heat and Mass Transfer, 1998, 41(14): 2221-2225.[27] Guo Zengyuan, Tao Wenquan, Shah R K. The field synergy (coordination) principle and its applications in enhancing single phase convective heat transfer[J]. International Journal of Heat and Mass Transfer, 2005, 48(9): 1797-1807.[28] Guo Jiangfeng, Huai Xiulan. Numerical investigation of helically coiled tube from the viewpoint of field synergy principle[J]. Applied Thermal Engineering, 2016, 98: 137-143.[29] Cui Xinying, Guo Jiangfeng, Huai Xiulan, et al. Numerical study on novel airfoil fins for printed circuit heat exchanger using supercritical CO2[J]. International Journal of Heat and Mass Transfer, 2018, 121: 354-366.[30] Liu Wei, Liu Peng, Wang Junbo, et al. Exergy destruction minimization: A principle to convective heat transfer enhancement[J]. International Journal of Heat and Mass Transfer, 2018, 122: 11-21.[31] Sun Yue, Lin Guiping, Yu Jia, et al. Theoretical investigation of natural convection heat transfer in inclined and fully divided CO2 enclosures on Mars[J]. International Journal of Heat and Mass Transfer, 2018, 126(Part B): 1113-1122.[32] Wu Ching-chi, Chen ■-kuang, Yang Yue-tzu, et al. Numerical simulation of turbulent flow forced convection in a twisted elliptical tube[J]. International Journal of Thermal Sciences, 2018, 132: 199-208.[33] Li Fang, Zhu Wenhui, He Hu. Numerical optimization on microchannel flow and heat transfer performance based on field synergy principle[J]. International Journal of Heat and Mass Transfer, 2019, 130: 375-385.[34] 刘伟, 刘志春, 过增元. 对流换热层流流场的物理量协同与传热强化分析[J]. 科学通报, 2009, 54(12): 1779-1785.[35] 刘伟, 刘志春, 黄素逸. 湍流换热的场物理量协同与传热强化分析[J]. 科学通报, 2010, 55(3): 281-288.[36] 何雅玲, 雷勇刚, 田丽亭, 等. 高效低阻强化换热技术的三场协同性探讨[J]. 工程热物理学报, 2009, 30(11): 1904-1906.[37] 陈群, 任建勋, 过增元. 流体流动场协同原理及其在减阻中的应用[J]. 科学通报, 2008,53(4): 489-492.[38] 顾国锋, 郭平生. 运动流体强化传热的实现条件[J]. 广西物理, 2006,27(1): 12-15.[39] 杨志超, 杨臧健, 钟英杰. 场协同理论及其在脉动流传热技术中的应用前景[J]. 机电工程, 2013, 30(4): 435-438.[40] 吴明, 何雅玲, 陶文铨, 等. 场协同理论在脉管制冷机研究中的推广[J]. 工程热物理学报, 2002,23(4): 488-490.[41] 陶文铨, 何雅玲. 场协同原理: 它的科学之美及与■的关系[J]. 中国科学: 技术科学, 2021, 51(10): 1155-1165.[42] He Yaling, Wu Ming, Tao Wenquan, et al. Improvement of the thermal performance of pulse tube refrigerator by using a ge-neral principle for enhancing energy transport and conversion processes[J]. Applied Thermal Engineering, 2004, 24(1): 79-93.[43] Guo Jiangfeng, Xu Mingtian, Cheng Lin. Numerical investigations of curved square channel from the viewpoint of field sy-nergy principle[J]. International Journal of Heat and Mass Transfer, 2011, 54(17/18): 4148-4151.[44] Yu Zhiqiang, Wang Peng, Zhou Wenjing, et al. Study on the consistency between field synergy principle and entransy dissipation extremum principle[J]. International Journal of Heat and Mass Transfer, 2018, 116: 621-634.[45] Zhao Xiaohuan, E Jiaqiang, Zhang Zhiqing, et al. A review on heat enhancement in thermal energy conversion and management using field synergy principle[J]. Applied Energy, 2020, 257: 113995.[46] Jian Ranran, Yang Weimin, Cheng Lisheng, et al. Numerical analysis of enhanced heat transfer by incorporating torsion elements in the homogenizing section of polymer plasticization with the field synergy principle[J]. International Journal of Heat and Mass Transfer, 2017, 115(Part A): 946-953.[47] Jian Ranran, Dai Rui, Sain M, et al. Ductile behavior and heat transfer efficiency in polymer extrusion by self-controlled “flipping melt-pancakes” with multi-fields synergy[J]. International Journal of Heat and Mass Transfer, 2022, 186: 122517.[48] Jian Ranran, Dai Rui, Sain M, et al. A strategy of stretching melt to a thin layer: Self-controlled “stretching melt-pancakes” to enhance heat transfer and mixing during polymer extrusion[J]. Applied Thermal Engineering, 2023, 224: 120090.

备注/Memo

备注/Memo:
国家自然科学基金资助项目(52206095);山东省自然科学基金资助项目(ZR 2021 QE 232)。
更新日期/Last Update: 1900-01-01