|本期目录/Table of Contents|

[1]成元海,路永春,张 震,等.白炭黑增强天然橡胶的热氧再生[J].合成橡胶工业,2024,3:210-215.
 CHENG Yuan-hai,LU Yong-chun,ZHANG Zhen,et al.Thermal-oxidative reclamation of natural rubber reinforced with silica[J].China synthetic rubber industy,2024,3:210-215.
点击复制

白炭黑增强天然橡胶的热氧再生(PDF)

《合成橡胶工业》[ISSN:1000-1255/CN:62-1036/TQ]

期数:
2024年3期
页码:
210-215
栏目:
出版日期:
2024-05-15

文章信息/Info

Title:
Thermal-oxidative reclamation of natural rubber reinforced with silica
文章编号:
1000-1255(2024)03-0210-06
作者:
成元海1路永春1张 震2吕弘煜1丁明强1王仕峰3
(1. 甘肃公航旅低碳科技有限公司,兰州 730070; 2. 上海市政工程设计研究总院(集团)有限公司, 上海 200092;3. 上海交通大学化学化工学院 高分子材料研究所, 上海 200240)
Author(s):
CHENG Yuan-hai1 LU Yong-chun1 ZHANG Zhen2 L■ Hong-yu1 DING Ming-qiang1 WANG Shi-feng3
(1. Gansu Public Aviation Travel Low Carbon Technology Co Ltd, Lanzhou 730070, China; 2. Shanghai Municipal Engineering Design Institute (Group) Co Ltd, Shanghai 200092, China; 3. Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)
关键词:
绿色轮胎白炭黑天然橡胶大豆油增强氧化再生松散层结合胶
Keywords:
green tire silica natural rubber reinforcement soybean oil oxidative reclamation bound rubber of loose strata
分类号:
TQ 332
DOI:
DOI:10.19908/j.cnki.ISSN1000-1255.2024.03.0210
文献标识码:
A
摘要:
研究了使用少量大豆油溶胀白炭黑增强天然橡胶(SNR)在不同温度和时间下的再生规律,并测定了再生产物的化学组分和微观形态。结果表明,在160~240 ℃温度范围内,经过20份(质量)大豆油溶胀后的SNR中溶胶含量随着温度升高而不断增加,当在220 ℃时再生15 min后再生产物中溶胶质量分数增至50.5%,而在200 ℃时再生产物中溶胶质量分数仅为28.7%,表明220 ℃是SNR再生中重要的转折温度;再生产物中氧元素含量的增加源于SNR在再生过程中发生了剧烈的氧化反应。此外,随着再生程度的增加,白炭黑表面松散层结合胶层厚由25 nm减至8 nm,表明热氧再生能够实现纳米白炭黑与其表面结合胶的高度剥离。
Abstract:
The reclamation law of natural rubber reinforced with silica (SNR) swollen by a small amount of soybean oil at different temperatures and in different time was studied, and the chemical composition and micromorphology of the reclaimed pro-ducts were determined. The results showed that within the temperature range of 160 and 240 ℃, the sol content of SNR increased continuously with the increasing temperature after swollen by soybean oil of 20 phr (mass), and when reclaimed at 220 ℃ for 15 min, the mass fraction of sol in the reclaimed product increased to 50.5%, and the mass fraction of sol in the reclaimed product was only 28.7% at 200 ℃, which indicated that 220 ℃ was an important turning point temperature in the reclamation process of SNR. The increase in oxygen content in the reclaimed product was due to the violent oxidation reaction of SNR during the reclamation process. In addition, as the degree of reclamation increased, the thickness of bound rubber of loose strata on the surface of silica decreased from 25 nm to 8 nm, indicating that thermal-oxidative reclamation could achieve a high degree of detachment between nano silica and its surface bound rubber.

参考文献/References

[1] Kim Jaehoon, Jeong Hyun-Yong. A study on the material pro-perties and fatigue life of natural rubber with different carbon blacks[J]. International Journal of Fatigue, 2005, 27(3): 263-272.[2] Sarkawi S S, Dierkes W K, Noordermeer J W M. Morphology of silica reinforced natural rubber: The effect of silane coupling agent[J]. Rubber Chemistry and Technology, 2015, 88(3): 359-372.[3] Karag■z M, A■bulut ■, Saridemir S. Waste to energy: Production of waste tire pyrolysis oil and comprehensive analysis of its usability in diesel engines[J]. Fuel, 2020, 275: 117844.[4] Ma Lan, Zhai Yinghao, Wan Chaoying, et al. Efficient thermo-oxidative reclamation of green tire rubber and silanized-silica/rubber interface characterization[J]. Polymer Degradation and Stability, 2022, 196: 109827.[5] Molanorouzi M, Mohaved S O. Reclaiming waste tire rubber by an irradiation technique[J]. Polymer Degradation and Stability, 2016, 128: 115-125.[6] Song Pan, Wan Chaoying, Xie Yanling, et al. Vegetable derived-oil facilitating carbon black migration from waste tire rubbers and its reinforcement effect[J]. Waste Management, 2018, 78: 238-248.[7] Nisar J, Ali G, Ullah N, et al. Pyrolysis of waste tire rubber: Influence of temperature on pyrolysates yield[J]. Journal of Environmental Chemical Engineering, 2018, 6: 3469-3473.[8] Yazdani E, Hashemabadi S H, Taghizadeh A. Study of waste tire pyrolysis in a rotary kiln reactor in a wide range of pyrolysis temperature[J]. Waste Management, 2019, 85: 195-201.[9] Al-Hartomy O A, Al-Ghamdi A A, Al Said S A F, et al. Cha-racterization of carbon silica hybrid fillers obtained by pyrolysis of waste green tires by the STEM-EDX method[J]. Materials Characterization, 2015, 101: 90-96.[10] Al-Hartomy O A, Al-Ghamdi A A, Al Said S A F, et al. Effect of the carbon-silica reinforcing filler obtained from the pyrolysis-cum-water vapour of waste green tyres upon the properties of natural rubber based composites[J]. Progress in Rubber, Plastics and Recycling Technology, 2015, 31(1): 25-41.[11] Zhang Zhen, Li Jiayi, Wan Chaoying, et al. Understanding H2O2-induced thermo-oxidative reclamation of vulcanized styrene butadiene rubber at low temperatures[J]. ACS Sustai-nable Chemistry & Engineering, 2021, 9(5): 2378-2387.[12] Ghorai S, Mondal D, Dhanania S, et al. Reclaiming of waste guayule natural rubber vulcanizate-reclaim rubber for green tire applications: An approach for sustainable development[J]. Journal of Elastomers & Plastics, 2019, 51(3): 193-210.[13] Luginsland H. Reactivity of the sulfur chains of the tetrasulfane silane Si 69 and the disulfane silane TESPD[J]. Kautsch Gummi Kunstst, 2000, 53(1): 10-19.[14] Reuvekamp L A, Debnath S, Ten Brinke J, et al. Effect of zinc oxide on the reaction of TESPT silane coupling agent with silica and rubber[J]. Rubber Chemistry and Technology, 2004, 77(1): 34-49.[15] Ivanov M, Mihaylov M. Silica obtained via pyrolysis of waste ‘green’ tyres-a filler for tyre tread rubber blends[J]. Journal of Elastomers & Plastics, 2011, 43(4): 303-316.[16] Zhang Zhen, Wan Chaoying, Song Pan, et al. Soybean oil induced efficient thermal-oxidative degradation of covalently crosslinked styrene butadiene rubber[J]. Journal of Applied Polymer Science, 2020, 137(31): 48935.[17] Xiang Kewei, Wang Xiaoan, Huang Guangsu, et al. Thermal ageing behavior of styrene-butadiene random copolymer: A study on the ageing mechanism and relaxation properties[J]. Polymer Degradation and Stability, 2012, 97(9): 1704-1715.[18] Zheng Wei, Liu Li, Zhao Xiuying, et al. Data for effects of lanthanum complex on the thermo-oxidative aging of natural rubber[J]. Data in Brief, 2015, 5: 789-795.[19] Susanna A, D′arienzo M, Di Credico B, et al. Catalytic effect of ZnO anchored silica nanoparticles on rubber vulcanization and cross-link formation[J]. European Polymer Journal, 2017, 93: 63-74.[20] Darmstadt H, Roy C, Kaliaguine S. Characterization of pyrolytic carbon blacks from commercial tire pyrolysis plants[J]. Carbon, 1995, 33(10): 1449-1455.

备注/Memo

备注/Memo:
科技部重点研发计划项目(2021 YFE 0105200);上海市“科技创新行动计划”启明星项目(杨帆专项:23 YF 1442200);中国博士后科学基金资助项目(2023 M 732329)。
更新日期/Last Update: 1900-01-01