|本期目录/Table of Contents|

[1]张子轮,景 杰,张国杰,等.马来酸酐改性高掺量橡胶沥青制备与性能[J].合成橡胶工业,2024,3:197-202.
 ZHANG Zi-lun,JING Jie,ZHANG Guo-jie,et al.Preparation and properties of maleic anhydride-modified high-content rubber asphalt[J].China synthetic rubber industy,2024,3:197-202.
点击复制

马来酸酐改性高掺量橡胶沥青制备与性能(PDF)

《合成橡胶工业》[ISSN:1000-1255/CN:62-1036/TQ]

期数:
2024年3期
页码:
197-202
栏目:
出版日期:
2024-05-15

文章信息/Info

Title:
Preparation and properties of maleic anhydride-modified high-content rubber asphalt
文章编号:
1000-1255(2024)03-0197-06
作者:
张子轮1景 杰2张国杰1王寒冰1王仕峰1?鄢
(1. 上海交通大学 化学化工学院,上海 200240; 2. 甘肃公航旅建设集团有限公司,兰州 730000)
Author(s):
ZHANG Zi-lun1 JING Jie2 ZHANG Guo-jie1 WANG Han-bing1 WANG Shi-feng1
(1. School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; 2. Gansu Provincial Highway Aviation Tourism Construction Group Co Ltd, Lanzhou 730000, China)
关键词:
马来酸酐再生橡胶高掺量橡胶沥青接枝反应改性反应机理高低温性能
Keywords:
maleic anhydride devulcanized rubber high-content rubber asphalt grafting reaction modification reaction mechanism high- and low-temperature performance
分类号:
U 414
DOI:
DOI:10.19908/j.cnki.ISSN1000-1255.2024.03.0197
文献标识码:
A
摘要:
使用高度降解的再生橡胶(DR)制备了高掺量橡胶沥青(HCRA),通过衰减全反射傅里叶变换红外光谱仪、凝胶渗透色谱仪、动态剪切流变仪和动态力学分析仪,对比研究了马来酸酐(MAH)预接枝DR改性与MAH和DR直接共混改性对HCRA结构与性能的影响,探讨了两种改性方法的改性机理。结果表明,MAH预接枝DR时发生了由烯烃双键和烯丙基碳氢原子提供活性位点的自由基取代反应,而MAH和DR与沥青直接共混时,存在自由基取代反应和酯化反应两种反应,并以后者为主;MAH改性HCRA的溶胶组分中以中低分子量组分为主;MAH改性显著改善了HCRA的高、低温流变性能。此外,两种改性方法对HCRA的结构与性能均有影响,且随MAH掺量的变化存在明显差异。
Abstract:
High- content rubber asphalt (HCRA) was prepared by using highly devulcanized rubber (DR), the effects of maleic anhydride (MAH) pre-grafted devulcanized rubber (DR) modification and direct blending modification of MAH and DR on the structure and properties of HCRA were comparatively studied by attenuated total reflection Fourier transform infrared spectrometer, gel permeation chromatography, dynamic shear rheometer and dynamic mechanical analyzer, and the modification mechanisms of two modification methods were explored. The results showed that during the pre-grafting of MAH onto DR, the free radical substitution reaction with active sites provided by olefin double bonds and allyl hydrocarbon atoms occurred, while when MAH and DR were directly blended with asphalt, there were two reactions: free radical substitution reaction and esterification, the latter being the main one. The sol components of MAH-modified HCRA were mainly composed of low and medium molecular weight components. The MAH improved significantly the high- and low-temperature rheological properties of HCRA. In addition, both the modification methods had an impact on the structure and properties of HCRA, and there were significant differences with the change of addition amount of MAH.

参考文献/References

[1] Li Fan, Zhang Xiao, Wang Linbing, et al. The preparation process, service performances and interaction mechanisms of crumb rubber modified asphalt (CRMA) by wet process: A comprehensive review[J]. Construction and Building Mate-rials, 2022, 354: 129168.[2] Wu Shaopeng, Ye Qunshan, Li Ning. Investigation of rheological and fatigue properties of asphalt mixtures containing polyester fibers[J]. Construction and Building Materials, 2007, 22(10): 2111-2115.[3] Ouyang Chunfa, Gao Qun, Shi Yutao, et al. Compatibilizer in waste tire powder and low-density polyethylene blends and the blends modified asphalt[J]. Journal of Applied Polymer Science, 2011, 123(1): 485-492.[4] Newman S. Rubber modification of plastics[M]. Paul D R, Newman S. Polymer Blends. Salt Lake City: Academic Press, 1978: 63-89.[5] Kong Peipei, Chen Xianhua, Xu Gang, et al. Preparation and characterization of maleic anhydride-grafted desulfurization rubber powder by free-radical polymerization[J]. Polymer Engineering and Science, 2021, 61(10): 2567-2575.[6] Aggour Y A, Al-Shihri A S, Bazzt M R. Surface modification of waste tire by grafting with styrene and maleic anhydride[J]. Open Journal of Polymer Chemistry, 2012, 2(2): 70-76.[7] Herrington P R, Wu Yinqui, Forbes M C, et al. Rheological modification of bitumen with maleic anhydride and dicarboxylic acids[J]. Fuel, 1999, 78(1): 101-110.[8] Boucher J L, Wang Ihsiung, Romine R A. Addition chemistry in asphalt[J]. American Chemical Society, Division of Petroleum Chemistry, Preprints, 1990, 35(3): 556-561.[9] Kang Yang, Wang Fei, Chen Zhiming. Reaction of asphalt and maleic anhydride: Kinetics and mechanism[J]. Chemical Engineering Journal, 2010, 164(1): 230-237.[10] 王曦林, 余剑英, 程松波, 等. MAH-g-SBS改性沥青灌缝材料的制备与性能[J]. 武汉理工大学学报, 2007, 29(9): 59-61.[11] Zhu Yajing, Xu Guangji, Ma Tao, et al. Performances of rubber asphalt with middle/high content of waste tire crumb rubber[J]. Construction and Building Materials, 2022, 335: 127488.[12] Zhang Zilun, Yang Wei, Ma Yuetan, et al. Effect of dynamic vulcanization on the performance of high content rubber modified asphalt[J]. Journal of Applied Polymer Science, 2023, 140(22): 53889.[13] Billiter T, Davison R, Glover C, et al. Production of asphalt-rubber binders by high-cure conditions[J]. Transportation Research Record, 1997, 1586(1): 50-56.[14] tur Rasool R, Song Pan, Wang Shifeng. Thermal analysis on the interactions among asphalt modified with SBS and different degraded tire rubber[J]. Construction and Building Materials, 2018, 182(10): 134-143.[15] Li Huaming, Chen Hongbiao, Shen Zhigang, et al. Preparation and characterization of maleic anhydride-functionalized syndiotactic polystyrene[J]. Polymer, 2002, 43(20): 5455-5461.

备注/Memo

备注/Memo:
甘肃省科技重大专项(22 YF 11 GA 305)。
更新日期/Last Update: 1900-01-01