|本期目录/Table of Contents|

[1]郑文洁,谭忠阳?鄢,张学全.基于配位链转移聚合制备反式-1,4-聚丁二烯与聚甲基丙烯酸甲酯嵌段共聚物[J].合成橡胶工业,2024,3:192-196.
 ZHENG Wen-jie,TAN Zhong-yang,ZHANG Xue-quan.Preparation of trans-1,4-polybutadiene-block-polymethyl methacrylate based on coordinative chain transfer polymerization[J].China synthetic rubber industy,2024,3:192-196.
点击复制

基于配位链转移聚合制备反式-1,4-聚丁二烯与聚甲基丙烯酸甲酯嵌段共聚物(PDF)

《合成橡胶工业》[ISSN:1000-1255/CN:62-1036/TQ]

期数:
2024年3期
页码:
192-196
栏目:
出版日期:
2024-05-15

文章信息/Info

Title:
Preparation of trans-1,4-polybutadiene-block-polymethyl methacrylate based on coordinative chain transfer polymerization
文章编号:
1000-1255(2024)03-0192-05
作者:
郑文洁1谭忠阳1?鄢张学全2
(1. 沈阳理工大学 材料科学与工程学院,沈阳 110159; 2. 青岛科技大学 高分子科学与工程学院,山东 青岛 266042)
Author(s):
ZHENG Wen-jie1 TAN Zhong-yang1 ZHANG Xue-quan2
(1. School of Material and Engineering, Shenyang Ligong University, Shenyang, 110159, China; 2. School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China)
关键词:
配位链转移聚合反式-14-聚丁二烯聚甲基丙烯酸甲酯非极性-极性嵌段共聚物相分离形态
Keywords:
coordination chain transfer polymerization trans-14-polybutadiene polymethyl me-thacrylate non-polar-polar block copolymer phase separation morphology
分类号:
TQ 333.99
DOI:
DOI:10.19908/j.cnki.ISSN1000-1255.2024.03.0192
文献标识码:
A
摘要:
使用异丙氧基钕/正丁基镁催化体系催化丁二烯进行高反式-1,4-结构选择性配位链转移聚合,再加入极性单体甲基丙烯酸甲酯制备了反式-1,4-聚丁二烯和聚甲基丙烯酸甲酯的非极性-极性两嵌段共聚物(TPB-b-PMMA),通过凝胶渗透色谱、傅里叶变换红外光谱、核磁共振波谱、原子力显微镜和透射电子显微镜表征了嵌段共聚物TPB-b-PMMA的分子量及其分布、微观结构,以及嵌段共聚物薄膜的表面形貌和微观相态。结果表明,所得嵌段共聚物的凝胶渗透色谱曲线为单峰,分子量分布较窄(多分散性指数小于2.5);嵌段共聚物中反式-1,4-聚丁二烯链段中反式-1,4-结构摩尔分数为95.8%,甲基丙烯酸甲酯结构摩尔分数在10.9%~39.7%范围内可调控;此半结晶嵌段共聚物薄膜具有相分离形态,其圆柱形微区尺寸约为25 nm。
Abstract:
High trans-1,4-selective coordination chain transfer polymerization of butadiene was achieved through the catalysis of isopropoxyl neodymium/n-butyl magnesium catalyst system, the non-polar-polar diblock copolymer of trans-1,4-polybutadiene and polymethyl methacrylate (TPB-b-PMMA) was prepared after the addition of polar monomer methyl methacrylate(MMA), and molecular weight and its distribution, microstructure, and surface morphology and micromorphology of the block copolymer thin film were characterized by gel permeation chromatography(GPC), Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, atomic force microscope, and transmission electron microscope. The results indicated that GPC curve of the obtained block copolymer showed single peak and the molecular weight distribution were relatively narrow (polydispersity index less than 2.5); the mole fraction of trans-1,4- unit of trans-1,4-polybutadiene segment in block copolymers was 95.8% and the mole fraction of MMA unit could be controlled within the range of 10.9% to 39.7%; the semicrystalline block copolymer thin film had a phase separation morphology with a cylindrical micro domain size of 25 nm.

参考文献/References

[1] Valente A, Mortreux A, Visseaux M, et al. Coordinative chain transfer polymerization[J]. Chemical Reviews, 2013, 113(5): 3836-3857.[2] Fan Changliang, Bai Chenxi, Cai Hongguang, et al. Preparation of high cis-1,4 polyisoprene with narrow molecular weight distribution via coordinative chain transfer polymerization[J]. Journal of Polymer Science (Part A): Polymer Chemistry, 2010, 48(21): 4768-4774.[3] Wang Feng, Liu Heng, Zheng Wenjie, et al. Fully-reversible and semi-reversible coordinative chain transfer polymerizations of 1,3-butadiene with neodymium-based catalytic systems[J]. Polymer, 2013, 54(25): 6716-6724.[4] Valente A, Zinck P, Vitorin M J, et al. Rare earths/main group metal alkyls catalytic systems for the 1,4-trans stereoselective coordinative chain transfer polymerization of isoprene[J]. Journal of Polymer Science (Part A): Polymer Chemistry, 2010, 48(21): 4640-4647.[5] Wang Feng, Liu, Heng, Hu Yanming, et al. Lanthanide complexes mediated coordinative chain transfer polymerization of conjugated dienes[J]. Science China Technological Sciences, 2018, 61(9): 1286-1294.[6] Arriola D J, Carnahan E M, Hustad P D, et al. Catalytic production of olefin block copolymers via chain shuttling polyme-rization[J]. Science, 2006, 312(5774): 714-719.[7] Valente A, Zinck P, Mortreux A, et al. Catalytic chain transfer (co-)polymerization: Unprecedented polyisoprene CCG and a new concept to tune the composition of a statistical copolymer[J]. Macromolecular Rapid Communications, 2009, 30(7): 528-531.[8] Li Qiongrong, Liu Heng, Wang Feng, et al. Preparation of star-shaped polybutadiene via coordinative chain transfer polymerization[J]. 合成橡胶工业, 2022, 45(3): 236.[9] Liang Shanshan, Chen Xiang, Liu Heng, et al. Preparation of liquid ethylene propylene rubber with narrow molecular weight distribution[J]. 合成橡胶工业, 2020, 43(5): 424.[10] Zhang Mingming, Liu Lijia, Cong Rixin, et al. In-situ block copolymerization of 1,3-butadiene with cyclohexene oxide and trimethylene carbonate via combination of coordinative chain transfer polymerization and ring opening polymerization by neodymium-based catalyst system[J]. European Polymer Journal, 2021, 148: 110355.[11] Wang Feng, Zhang Chunyu, Hu Yanming, et al. Reversible coordinative chain transfer polymerization of isoprene and copolymerization with epsilon-caprolactone by neodymium-based catalyst[J]. Polymer, 2012, 53(26): 6027-6032.[12] Zheng Wenjie, Yan Nan, Zhu Yutian, et al. Highly trans-1,4-stereoselective coordination chain transfer polymerization of 1,3-butadiene and copolymerization with cyclic esters by a neodymium-based catalyst system[J]. Polymer Chemistry, 2015, 6(33): 6088-6095.[13] Gromada M, le Pichon L, Mortreux A, et al. Neodymium alk(aryl)oxides-dialkylmagnesium systems for butadiene polyme-rization and copolymerization with styrene and glycidyl methacrylate[J]. Journal of Organometallic Chemistry, 2003, 683(1): 44-55.[14] Gromada J, Fouga C, Chenal T, et al. Neodymium (Ⅲ) tert-butoxide-dialkylmagnesium, a new initiator system for syndiotactic polymerization of methyl methacrylate[J]. Macromolecular Chemistry and Physics, 2002, 203(3): 550-555.[15] Friebe L, Nuyken O, Obrecht W. Neodymium-based Ziegler/Natta catalysts and their application in diene polymerization[J]. Advances in Polymer Science, 2006, 204: 1-154.[16] Wang Hsin Ta, Bethea T W, Harwood H J. 13C-NMR spectra of isomerized polybutadienes[J]. Macromolecules, 1993, 26(4): 715-720.[17] Brar A S, Singh G, Shankar R. Structural investigations of poly(methyl methacrylate) by two-dimensional NMR[J]. Journal of Molecular Structure, 2004, 703(1): 69-81.

备注/Memo

备注/Memo:
国家自然科学基金资助项目(51803206,52203063,U 1862206);2021年辽宁省教育厅基本科研项目(LJKZ 0249, LJKZ 0253);沈阳理工大学博士启动项目(1010147000917,1010147000918)。
更新日期/Last Update: 1900-01-01