[1] Cai Yongzhou, Zang Mengyan, Duan Fuyao. Modeling and simulation of vehicle responses to tire blowout[J]. Tire Science and Technology, 2015, 43(3): 242-258.[2] Laurens de H T, Zhou Guofu. Molecular alignment, large surface deformations and hysteresis effects in polydomain LC polymer films under an in-plane DC electric field [J]. Journal of Physics and Chemistry of Solids, 2018, 122: 36-40.[3] 何平笙, 朱平平, 杨海洋. 如何理解橡胶高弹性的特点[J]. 高分子通报, 2009(12): 68-71.[4] 朱家顺. 硫化橡胶的回弹检测[J]. 弹性体, 2020, 30(5): 52-54.[5] 刘二强, 肖革胜, 王鹤峰, 等. 单轴拉伸确定粘弹性材料瞬时模量的测试方法[J]. 高分子材料科学与工程, 2016, 32(8): 104-108.[6] 路纯红, 白鸿柏. 粘弹性材料本构模型的研究[J]. 高分子材料科学与工程, 2007, 23(6): 28-31.[7] 肖锐, 向玉海, 钟旦明, 等. 考虑缠结效应的超弹性本构模型[J]. 力学学报, 2021, 53(4): 1028-1037.[8] 尚文瑄, 向军淮, 方军, 等. 小弯曲半径高强不锈钢管数控绕弯过程应力应变分析[J]. 塑性工程学报, 2023, 30(12): 204-212.[9] 李雪冰, 危银涛. 一种改进的Yeoh超弹性材料本构模型[J]. 工程力学, 2016, 33(12): 38-43.[10] 燕山, 王伟. 橡胶类超弹性本构模型中材料参数的确定[J]. 橡胶工业, 2014, 61(8): 453-457.[11] 陈家照, 黄闽翔, 王学仁, 等. 几种典型的橡胶材料本构模型及其适用性[J]. 材料导报, 2015, 29(S 1): 118-120.[12] Zhi Jieying, Lu Hongli, Wang Haiqing, et al. Analysis on dynamic compression performance of tire rubber based on generalized Maxwell model[J]. Acta Polymerica Sinica, 2016(7): 887-894.[13] Wang S L, Chester S A. Experimental characterization and continuum modeling of inelasticity in filled rubber-like materials[J]. International Journal of Solids and Structures, 2018, 136: 125-136.[14] Belhassen L, Koubaa S, Wali M, et al. Numerical prediction of springback and ductile damage in rubber-pad forming process of aluminum sheet metal[J]. International Journal of Mechanical Sciences, 2016, 117: 218-226.[15] 周华森, 杨晓翔. 橡胶等双轴拉伸十字形试样的设计与有限元分析[J]. 橡胶工业, 2018, 65(10): 1102-1107.[16] 李凡珠, 刘金朋, 杨海波, 等. 橡胶材料单轴拉伸疲劳寿命预测的有限元分析[J]. 橡胶工业, 2015, 62(7): 439-442.[17] Khajehsaeid H, Reese S, Arghavani J, et al. Strain and stress concentrations in elastomers at finite deformations: Effects of strain-induced crystallization, filler reinforcement, and deformation rate[J]. Acta Polymerica, 2016, 227(7): 1969-1982.[18] 李志超, 危银涛, 金状兵, 等. 基于裂纹形核理论的橡胶制品疲劳研究[J]. 功能材料, 2014, 24(6): 28-34. [19] Guo Qiang, Za■ri F, Guo Xinglin. A thermo-viscoelastic-damage constitutive model for cyclically loaded rubbers (Part Ⅰ): Model formulation and numerical examples[J]. International Journal of Plasticity, 2018, 101: 106-124.