|本期目录/Table of Contents|

[1]雍占福,王茂辉,黄兆阁?鄢.基于有限元分析的橡胶回弹性模拟[J].合成橡胶工业,2024,1:45-49.
 YONG Zhan-fu,WANG Mao-hui,HUANG Zhao-ge.Simulation of rubber resilience based on finite element analysis[J].China synthetic rubber industy,2024,1:45-49.
点击复制

基于有限元分析的橡胶回弹性模拟(PDF)

《合成橡胶工业》[ISSN:1000-1255/CN:62-1036/TQ]

期数:
2024年1期
页码:
45-49
栏目:
出版日期:
2024-01-15

文章信息/Info

Title:
Simulation of rubber resilience based on finite element analysis
文章编号:
1000-1255(2024)01-0045-05
作者:
雍占福王茂辉黄兆阁?鄢
青岛科技大学 高分子科学与工程学院,山东 青岛 266042
Author(s):
YONG Zhan-fu WANG Mao-hui HUANG Zhao-ge
School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
关键词:
橡胶回弹性有限元分析构象熵能量损耗
Keywords:
rubber resilience finite element analysis conformational entropy energy loss
分类号:
330.1+7
DOI:
DOI:10.19908/j.cnki.ISSN1000-1255.2024.01.0045
文献标识码:
A
摘要:
借助有限元分析软件ABAQUS模拟了橡胶材料回弹测试的实验过程,探讨了回弹过程中的能量变化情况,为橡胶材料黏弹性的进一步研究做了铺垫。结果表明,新方法的表征结果与实际测试结果基本一致,证明拟合的本构方程与材料本身属性相符,同时表征了回弹过程中能量的准确变化。在冲击过程中,摆锤的动能主要转化为试样的弹性势能和耗散能。此外,通过分析试样模型温度场的变化,更加直观地观察到橡胶变形过程中的能量损耗导致的温度上升,说明部分损失的动能转化为热能散失到了环境中。
Abstract:
The experimental process of rebound testing of rubber material was simulated using finite element analysis software ABAQUS, and the energy changes during the rebound process were discussed, laying the foundation for further research on viscoelasticity of rubber materials. The results showed that the characterization results of the new method were basically consistent with the actual test results, proving that the fitted intrinsic equation was consistent with the properties of the material itself, and at the same time characterizing the accurate energy changes during the rebound process. During the impact process, the kinetic energy of the pendulum was mainly transformed into the elastic potential energy and dissipation energy of the specimen. In addition, by analyzing the changes in the temperature field of the sample model, it was more intuitive to observe the temperature rise due to the energy loss during rubber deformation, indicating that part of the lost kinetic energy was converted into thermal energy and dissipated into the environment.

参考文献/References

[1] Cai Yongzhou, Zang Mengyan, Duan Fuyao. Modeling and simulation of vehicle responses to tire blowout[J]. Tire Science and Technology, 2015, 43(3): 242-258.[2] Laurens de H T, Zhou Guofu. Molecular alignment, large surface deformations and hysteresis effects in polydomain LC polymer films under an in-plane DC electric field [J]. Journal of Physics and Chemistry of Solids, 2018, 122: 36-40.[3] 何平笙, 朱平平, 杨海洋. 如何理解橡胶高弹性的特点[J]. 高分子通报, 2009(12): 68-71.[4] 朱家顺. 硫化橡胶的回弹检测[J]. 弹性体, 2020, 30(5): 52-54.[5] 刘二强, 肖革胜, 王鹤峰, 等. 单轴拉伸确定粘弹性材料瞬时模量的测试方法[J]. 高分子材料科学与工程, 2016, 32(8): 104-108.[6] 路纯红, 白鸿柏. 粘弹性材料本构模型的研究[J]. 高分子材料科学与工程, 2007, 23(6): 28-31.[7] 肖锐, 向玉海, 钟旦明, 等. 考虑缠结效应的超弹性本构模型[J]. 力学学报, 2021, 53(4): 1028-1037.[8] 尚文瑄, 向军淮, 方军, 等. 小弯曲半径高强不锈钢管数控绕弯过程应力应变分析[J]. 塑性工程学报, 2023, 30(12): 204-212.[9] 李雪冰, 危银涛. 一种改进的Yeoh超弹性材料本构模型[J]. 工程力学, 2016, 33(12): 38-43.[10] 燕山, 王伟. 橡胶类超弹性本构模型中材料参数的确定[J]. 橡胶工业, 2014, 61(8): 453-457.[11] 陈家照, 黄闽翔, 王学仁, 等. 几种典型的橡胶材料本构模型及其适用性[J]. 材料导报, 2015, 29(S 1): 118-120.[12] Zhi Jieying, Lu Hongli, Wang Haiqing, et al. Analysis on dynamic compression performance of tire rubber based on generalized Maxwell model[J]. Acta Polymerica Sinica, 2016(7): 887-894.[13] Wang S L, Chester S A. Experimental characterization and continuum modeling of inelasticity in filled rubber-like materials[J]. International Journal of Solids and Structures, 2018, 136: 125-136.[14] Belhassen L, Koubaa S, Wali M, et al. Numerical prediction of springback and ductile damage in rubber-pad forming process of aluminum sheet metal[J]. International Journal of Mechanical Sciences, 2016, 117: 218-226.[15] 周华森, 杨晓翔. 橡胶等双轴拉伸十字形试样的设计与有限元分析[J]. 橡胶工业, 2018, 65(10): 1102-1107.[16] 李凡珠, 刘金朋, 杨海波, 等. 橡胶材料单轴拉伸疲劳寿命预测的有限元分析[J]. 橡胶工业, 2015, 62(7): 439-442.[17] Khajehsaeid H, Reese S, Arghavani J, et al. Strain and stress concentrations in elastomers at finite deformations: Effects of strain-induced crystallization, filler reinforcement, and deformation rate[J]. Acta Polymerica, 2016, 227(7): 1969-1982.[18] 李志超, 危银涛, 金状兵, 等. 基于裂纹形核理论的橡胶制品疲劳研究[J]. 功能材料, 2014, 24(6): 28-34. [19] Guo Qiang, Za■ri F, Guo Xinglin. A thermo-viscoelastic-damage constitutive model for cyclically loaded rubbers (Part Ⅰ): Model formulation and numerical examples[J]. International Journal of Plasticity, 2018, 101: 106-124.

备注/Memo

备注/Memo:
国家自然科学基金资助项目(51972185)。
更新日期/Last Update: 1900-01-01