|本期目录/Table of Contents|

[1]郭姜文,王书唯?鄢,张松波?鄢,等.苯并三氮唑取代吡啶钴配合物的合成及催化丁二烯聚合行为[J].合成橡胶工业,2024,1:12-17.
 GUO Jiang-wen,WANG Shu-wei,ZHANG Song-bo,et al.Synthesis and 1,3-butadiene polymerization behavior of cobalt complexes containing benzotriazole-substituted pyridine ligands[J].China synthetic rubber industy,2024,1:12-17.
点击复制

苯并三氮唑取代吡啶钴配合物的合成及催化丁二烯聚合行为(PDF)

《合成橡胶工业》[ISSN:1000-1255/CN:62-1036/TQ]

期数:
2024年1期
页码:
12-17
栏目:
出版日期:
2024-01-15

文章信息/Info

Title:
Synthesis and 1,3-butadiene polymerization behavior of cobalt complexes containing benzotriazole-substituted pyridine ligands
文章编号:
1000-1255(2024)01-0012-06
作者:
郭姜文1王书唯1?鄢张松波2?鄢胡雁鸣2
1. 大连工业大学 纺织与材料工程学院,辽宁 大连 116034; 2. 中科院大连化学物理研究所 能源材料部,辽宁 大连 116023
Author(s):
GUO Jiang-wen1WANG Shu-wei1ZHANG Song-bo2HU Yan-ming2
1. School of Textile and Material Engineering,Dalian Polytechnic University,Dalian 116034,China; 2. Division of Energy Materials,Dalian Institute of Chemical Physics of the Chinese Academy of Sciences,Dalian 116023,China
关键词:
苯并三氮唑聚丁二烯钴系催化剂取代基聚合温度
Keywords:
benzotriazole polybutadiene cobalt catalyst substituent polymerization temperature
分类号:
TQ 333.2
DOI:
DOI:10.19908/j.cnki.ISSN1000-1255.2024.01.0012
文献标识码:
A
摘要:
合成了苯并三氮唑取代吡啶配体的钴配合物,研究了助催化剂种类、取代基结构及聚合温度和时间对1,3-丁二烯聚合的影响。结果显示,经甲基铝氧烷活化后,配合物表现出较高的催化丁二烯聚合活性。配合物的活性取决于配体上吡啶2-位的取代基,其体积的增大导致活性降低,但与聚合物的顺式-1,4-结构选择性并无明显关联。其中,取代基为氢的钴配合物的活性和顺式-1,4-结构选择性最高,可制备出顺式-1,4-结构摩尔分数为94.0%、数均分子量达124.8×103 g/mol、分子量分布窄(多分散性指数2.0)的聚丁二烯。升高反应温度可明显提高聚合速率,在80 ℃的高温下聚合物收率仍可达93.6%,表明该催化剂体系具有很高的热稳定性。
Abstract:
A series of cobalt complexes contai-ning benzotriazole-substituted pyridine ligands were synthesized. The effects of the type of cocatalyst, substituent structure, and polymerization temperature and time on 1,3-butadiene polymerization were investigated. The results showed that after activation by methylaluminoxane, these complexes exhibited medium to high activities for 1,3-butadiene polyme-rization. The activity of the complex depended on the substituent at 2-position of pyridine on the ligand. An increment of the bulkiness of substituent resulted in a decrease in activity, but it was not significantly related to the cis-1,4- selectivity of the polymer. Among them, cobalt complex with hydrogen substituent group showed the highest activity and cis-1,4- selectivity, affording polybutadiene with predominant cis-1,4- unit mole fraction of 94.0%, a number average molecular weight of 124.8×103 g/mol, and a narrow molecualr weight distribution (polydispersity index 2.0). Raising the reaction temperature could significantly increase the polymerization rate, even at a high temperature of 80 ℃,the polymer yield remained up to 93.6%, implying the high thermal stability of the catalyst system.

参考文献/References

[1] Johnson L K, Killian C M, Brookhart M. New Pd(Ⅱ)-based and Ni(Ⅱ)-based catalysts for polymerization of ethylene and alpha-olefins [J]. Journal of the American Chemical Society, 1995, 117(23): 6414-6415.[2] Dai Shengyu, Li Gen, Lu Weiqing, et al. Suppression of chain transfer via a restricted rotation effect of dibenzosuberyl substituents in polymerization catalysis [J]. Polymer Chemistry, 2021, 12(22): 3240-3249.[3] Wang Bin, Daugulis O, Brookhart M. Ethylene polymerization with Ni(Ⅱ) diimine complexes generated from 8-halo-1-naphthylamines: The role ofequilibrating syn/anti diastereomers in determining polymer properties [J]. Organometallics, 2019, 38(24): 4658-4668.[4] Guo Jun, Zhang Chunyu, Bi Jifu, et al. Cobalt complexes bearing pyridine-imino ligands with bulky aryl substituents: Synthesis, characterization, and 1,3-butadiene polymerization behaviors [J]. Journal of Organometallic Chemistry, 2015, 798: 414-421.[5] Kitteringham E, Zhou Z, Twamley B, et al. Au(Ⅲ) and Pt(Ⅱ) complexes of a novel and versatile 1,4-disubstituted 1,2,3-triazole-based ligand possessing diverse secondary and tertiary coordinating groups [J]. Inorganic Chemistry, 2018, 57(19): 12282-12290.[6] Duan Haifeng, Sengupta S, Petersen J L, et al. Triazole-Au(Ⅰ) complexes: A new class of catalysts with improved thermal stability and reactivity for intermolecular alkyne hydroamination [J]. Journal of the American Chemical Society, 2009, 131(34): 12100-12102.[7] Verma A K, Jha R R, Chaudhary R, et al. 2-(1-benzotriazolyl)pyridine: A robust bidentate ligand for the palladium-catalyzed C—C (Suzuki, Heck, Fujiwara-Moritani, Sonogashira), C—N and C—S coupling reactions [J]. Advanced Synthesis & Catalysis, 2013, 355(2/3): 421-438.[8] Krug M, Wichapong K, Erlenkamp G, et al. Discovery of 4-benzylamino-substituted α-carbolines as a novel class of receptor tyrosine kinase inhibitors [J]. ChemMedChem, 2011, 6(1): 63-72.[9] Vera-Luque P, Alajarin R, Alvarez-Builla J, et al. An improved synthesis of alpha-carbolines under microwave irradiation [J]. Organic Letters, 2006, 8(3): 415-418.[10] Du Wangming, Wu Ping, Wang Qingfu, et al. Ruthenium(Ⅱ) complex catalysts bearing a pyridyl-based benzimidazolyl-benzotriazolyl ligand for transfer hydrogenation of ketones [J]. Organometallics, 2013, 32(10): 3083-3090.[11] Li Jiahao, Yu Minyi, Duan Zhengchao, et al. Porous cross-linked polymer copper and iridium catalyzed the synthesis of quinoxalines and functionalized ketones under solvent-free conditions [J]. Materials Chemistry Frontiers, 2021, 5(21): 7861-7872.[12] Shida Y, Sakaguchi T, Shiotsuki M, et al. Synthesis and pro-perties of poly(diphenylacetylenes) having hydroxyl groups [J]. Macromolecules, 2005, 38(10): 4096-4102.[13] Wang Baolin, Gong Dirong, Bi Jifu, et al. Synthesis, characterization and 1,3-butadiene polymerization behaviors of cobalt complexes bearing 2-pyrazolyl-substituted 1,10-phenanthroline ligands [J]. Applied Organometallic Chemistry, 2013, 27(4): 245-252.[14] Hu Yanming, Dong Weimin, Masuda T. Novel methylaluminoxane-activated neodymium isopropoxide catalysts for 1,3-butadiene polymerization and 1,3-butadiene/isoprene copolymerization [J]. Macromolecular Chemistry and Physics, 2013, 214(19): 2172-2180.[15] Wang Baolin, Bi Jifu, Zhang Chunyu, et al. Highly active and trans-1,4 specific polymerization of 1,3-butadiene catalyzed by 2-pyrazolyl substituted 1,10-phenanthroline ligated iron (Ⅱ) complexes [J]. Polymer, 2013, 54(19): 5174-5181.

备注/Memo

备注/Memo:
中国石油科技管理部资助项目(2019 F-26)。
更新日期/Last Update: 1900-01-01