|本期目录/Table of Contents|

[1]吕双坤,彭曼琳,刘 剑,等.大量程高韧导电硅橡胶复合材料压力传感器的研制[J].合成橡胶工业,2023,6:509-518.
 L Shuang-kun,PENG Man-lin,LIU Jian,et al.Research and manufacture of large-range and high-toughness conductive silicon rubber composite pressure sensor[J].China synthetic rubber industy,2023,6:509-518.
点击复制

大量程高韧导电硅橡胶复合材料压力传感器的研制(PDF)

《合成橡胶工业》[ISSN:1000-1255/CN:62-1036/TQ]

期数:
2023年6期
页码:
509-518
栏目:
出版日期:
2023-11-15

文章信息/Info

Title:
Research and manufacture of large-range and high-toughness conductive silicon rubber composite pressure sensor
文章编号:
1000-1255(2023)06-0509-10
作者:
吕双坤1彭曼琳2刘 剑2盖卫明2?鄢姜瑞娟2梁国进3支春义
1. 松山湖材料实验室,广东 东莞 523000; 2. 深圳市市政设计研究院有限公司,广东 深圳 518029;3. 香港城市大学 工学院,香港 999077
Author(s):
L■ Shuang-kun1 PENG Man-lin2 LIU Jian2 GAI Wei-ming2 JIANG Rui-juan2 LIANG Guo-jin3 ZHI Chun-yi13
1. Songshan Lake Materials Laboratory, Dongguan 523000, China; 2. Shenzhen Municipal Design & Research Institule Co Ltd, Shenzhen 518029, China; 3. College of Engineering, City University of Hong Kong, Hongkong 999077, China
关键词:
纳米导电硅橡胶压力传感器纳米超导电用炭黑压阻效应叉指状单层电极灵敏度应用性能
Keywords:
nano-conductive silicon rubber pressure sensor nano superconductive carbon black piezoresistive effect interdigital single-layer electrode sensitivity application performance
分类号:
TQ 333.93
DOI:
DOI:10.19908/j.cnki.ISSN1000-1255.2023.06.0508
文献标识码:
B
摘要:
基于纳米导电橡胶的压阻效应,使用基体材料硅橡胶、纳米超导电用炭黑、真丝纤维织物、叉指电极、缓冲高分子材料及封装模具,采用密炼、开炼、固化、封装等工艺制备了导电硅橡胶复合材料压力传感器,通过优化导电填料在硅橡胶基体中的含量制得了具有最佳压阻特性的导电硅橡胶复合材料,最后探究了封装压力传感器在桥梁支座模型上的应用性能。结果表明,当纳米超导电用炭黑■质量分数为6.11%时,导电硅橡胶复合材料达到渗透阈值点,其压阻特性最佳;将真丝纤维织物植入导电硅橡胶所得的导电传感复合材料再与柔性叉指状单层电极进行结合并封装处理,可制备量程增大、探测灵敏、韧性增强的压力传感器;该压力传感器压力信号与电信号具有良好的线性关系,可以实现0~40 MPa范围内的压力探测;此外该压力传感器在桥梁支座模型测试中的测试值与理论值高度吻合。
Abstract:
Based on the piezoresistive effect of nano conductive rubber, conductive silicone rubber composite pressure sensor was prepared using the matrix material silicone rubber, nano superconductive carbon black, silk fiber fabric, interdigital electrode, buffer polymer material and encapsulation mold by processes such as internal mixing, open mixing, vulcanization and encapsulating, and the conductive silicone rubber composite material with the optimal piezoresistive characteristics was prepared by optimizing the content of conductive filler in the silicone rubber matrix. Finally, the application performance of encapsulated pressure sensor on bridge support model was explored. The results showed that when mass faction of nano superconductive carbon black ■ was 6.11%, the conductive silicone rubber composite material reached the penetration threshold point and had the best piezoresistive characteristics; the conductive sensing composite material obtained by implanting silk fiber fabric into conductive silicone rubber was then combined with the flexible interdigital single-layer electrode and encapsulated to generate the pressure sensor with increased range, sensitive detection, and enhanced toughness; the pressure sensor had a good linear relationship between the pressure signal and the electrical signal, and could achieve pressure detection within the range of 0 to 40 MPa. In addition, the measured value of the pressure sensor in the bridge support model test were highly consistent with the theoretical value.

参考文献/References

[1] Lv Zhen, Huang Xin, Fan Dongyang, et al. Scalable manufacturing of conductive rubber nanocomposites with ultralow percolation threshold for strain sensing applications[J]. Compo-sites Communications, 2021, 25: 100685.[2] Li Xingsheng, Wang Yumeng, Hou Yue, et al. Graphene nanosheet/Cu nanowire composite aerogel with a thin PDMS coating for electrically conductive pressure sensing rubber[J]. Composites ( Part A ) : Applied Science and Manufacturing, 2021,140: 106192.[3] 李雪雨, 温彦威, 陆少杰, 等. 导电橡胶复合材料研究进展[J]. 合成橡胶工业, 2022, 45(4): 331-335.[4] Mannsfeld S C B, Tee B C-K, Stoltenberg R M, et al. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers[J]. Nature Materials, 2010, 9(10): 859-864.[5] Huang Ying, Ming Xiaohui, Xiang Bei, et al. A new design of flexible three-dimension force tactile sensor of robot[J]. Chinese Journal of Sensors and Actuators, 2008, 21(10): 1695-1699.[6] 黄英, 陆伟, 赵小文, 等. 用于机器人皮肤的柔性多功能触觉传感器设计与实验[J]. 机器人, 2011, 33(3): 347-353.[7] 益小苏. 复合导电高分子材料的功能原理[M]. 北京: 国防工业出版社, 2004: 1-81.[8] Mei Haixia, Zhang Ce, Wang Rui, et al. Impedance characteristics of surface pressure-sensitive carbon black/silicone rubber composites[J]. Sensors and Actuators (A): Physical, 2015, 233: 118-124.[9] Hou Chengyi, Wang Hhongzhi, Zhang Qinghong, et al. Highly conductive, flexible, and compressible all-graphene passive electronic skin for sensing human touch[J]. Advanced Mate-rials, 2014, 26(29): 5018-5024.[10] Das N C, Chaki T K, Khastgir D. Conductive rubbers made by adding conductive carbon black to EVA, EPDM, and EVA-EPDM blends[J]. Plastics Rubber and Composites, 2001, 30(4): 162-169.[11] Mo Funian, Wang Zifeng, Jiang Ruijuan, et al. Energy-dissipative dual-crosslinked hydrogels for dynamically super-tough sensors[J]. Science China Materials, 2021, 64(11): 2764-2776.[12] 李雪雨, 周宇晨, 邓清晨, 等. 导电水凝胶的制备与性能[J]. 石化技术与应用, 2022, 40(2): 89-93.[13] Zhao Liqiong, Li Bin, Ding Shaohuan. Review on electrical conductivity of conducting silicone rubber filled with carbon black[J]. Silicone Material , 2011, 25(2): 117-120.[14] 周静, 孙海滨, 郑昕, 等. 粒子填充型导电复合材料的导电机理[J]. 陶瓷学报, 2009, 30(3): 281-285.[15] 卢金荣, 吴大军, 陈国华. 聚合物基导电复合材料几种导电理论的评述[J]. 塑料, 2004,33(5): 43-47.[16] 叶明泉, 贺丽丽, 韩爱军. 填充复合型导电高分子材料导电机理及导电性能影响因素研究概况[J]. 化工新型材料, 2008,36(11): 13-15.[17] 杨鸣波, 黄世琳, 刘正英. 导电粒子填充聚合物共混体系中的导电网络和流变网络[C]∥中国化学会. 中国化学会第28届学术年会第18分会场摘要集. 北京: 中国化学会, 2012: 112.[18] Beek L K H, Pul B I C F. Internal field emission in carbon black-loaded natural rubber vulcanizates[J]. Rubber Chemistry and Technology, 1963, 36(3): 740-746.[19] Sheng Ping. Fluctuation-induced tunneling conduction in disordered materials[J]. Physical Review(B), 1980, 21(6): 2180-2195.[20] 梁基照, 杨铨铨. 导电高分子复合材料逾渗阈值的预测[J]. 华南理工大学学报(自然科学版), 2007, 35(8): 80-82.[21] 梅海霞. 基于压敏硅橡胶的柔性压力传感器及其阵列的研究[D]. 长春: 吉林大学, 2016.[22] Kueseng P, Sae-Oui P, Rattanasom N. Mechanical and electrical properties of natural rubber and nitrile rubber blends filled with multi-wall carbon nanotube: Effect of preparation methods[J]. Polymer Testing, 2013, 32(4): 731-738.[23] 张立群. 橡胶纳米复合材料: 基础与应用[M]. 北京: 化学工业出版社, 2018: 262-282.

备注/Memo

备注/Memo:
深圳科创委资助项目(JSGG 20180508151728414);广东省科技厅资助项目(2018 B 020208001)。
更新日期/Last Update: 2023-11-15