|本期目录/Table of Contents|

[1]孙宝龙a,陈建港a,田堪良b,等.微孔橡胶的力学性能及超弹性本构模型[J].合成橡胶工业,2023,5:373-378.
 SUN Bao-long a,CHEN Jian-gang a,TIAN Kan-liang b,et al.Mechanical properties and hyperelastic constitutive model of microporous rubber[J].China synthetic rubber industy,2023,5:373-378.
点击复制

微孔橡胶的力学性能及超弹性本构模型(PDF)

《合成橡胶工业》[ISSN:1000-1255/CN:62-1036/TQ]

期数:
2023年5期
页码:
373-378
栏目:
出版日期:
2023-10-15

文章信息/Info

Title:
Mechanical properties and hyperelastic constitutive model of microporous rubber
文章编号:
1000-1255(2023)05-0373-06
作者:
孙宝龙1a陈建港1a田堪良1b张 凡1a周炯浩2牛文强2张慧莉1a?鄢
1. 西北农林科技大学a.水利与建筑工程学院, b.水土保持研究所,陕西 杨凌 712100; 2. 浙江天铁实业股份有限公司,浙江 天台317200
Author(s):
SUN Bao-long1 a CHEN Jian-gang1 a TIAN Kan-liang1 b ZHANG Fan1 a ZHOU Jiong-hao2NIU Wen-qiang2 ZHANG Hui-li1 a
1.a.College of Water Resources and Architectural Engineering, b.Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China; 2. Zhejiang Tiantie Industry Co Ltd, Tiantai 317200, China
关键词:
微孔橡胶三元乙丙橡胶力学性能超弹性本构模型静刚度
Keywords:
microporous rubber ethylene propylene diene monomer mechanical property hyperelastic constitutive model static stiffness
分类号:
TQ 333.4
DOI:
DOI:10.19908/j.cnki.ISSN1000-1255.2023.05.0373
文献标识码:
A
摘要:
基于微孔橡胶材料的单轴拉伸与压缩实验,运用超弹性本构模型拟合实验数据,采用精度评价方法对拟合效果进行评估,分析了适用于微孔橡胶材料的本构模型对应变区间的影响程度,并用拟合本构参数对微孔橡胶垫静刚度进行有限元模型的有效性验证。结果表明,材料在实验中存在较强的Mullins效应,5参数本构模型中Mooney-Rivlin 5拟合效果较好,有限元模型对静刚度预测值与试验值的相对误差为9.85%。
Abstract:
Based on the uniaxial tensile and compression tests of the microporous rubber material, the superelastic constitutive model was used to fit the test data, and the accuracy evaluation method was used to assess the fitting effect. The influence of the constitutive model on the strain intervals that was applicable to the microporous rubber material was analyzed. The effectiveness of the finite element model was verified for the static stiffness of the microporous rubber material using the fitted constitutive parameters. The results showed that the material had a strong Mullins effect in the test and Mooney-Rivlin 5 was the best fit. The relative error between the predicted value and the test value of the static stiffness of the finite element model was 9.85%.

参考文献/References

[1] Ribeiro A C, Paix■o A, Fortunato E, et al. Under sleeper pads in transition zones at railway underpasses: Numerical modelling and experimental validation [J]. Structure and Infrastructure Engineering, 2014, 11(11): 1432-1449.[2] Ngamkhanong C, Kaewunruen S. Effects of under sleeper pads on dynamic responses of railway prestressed concrete sleepers subjected to high intensity impact loads[J]. Engineering Structures, 2020, 214(6): 110604.[3] Cai Xiaopei, Li Dacheng, Zhang Yanrong, et al. Experimental study on the vibration control effect of long elastic sleeper track in subways[J]. Shock and Vibration, 2018, 2018: 1-13.[4] Kra■kiewicz C, Lipko C, P■udowska M, et al. Static and dyna-mic characteristics of resilient mats for vibration isolation of railway tracks[J]. Procedia Engineering, 2016, 153: 317-324.[5] Kra■kiewicz C, Zbiciak A, Oleksiewicz W, et al. Static and dynamic parameters of railway tracks retrofitted with under slee-per pads [J]. Archives of Civil Engineering, 2018, 64(4): 187-201.[6] Urbańska-galewska E, Kra■kiewicz C, Zbiciak A, et al. The influence of selected static and dynamic parameters of resilient mats on vibration reduction of railway tracks[J]. MATEC Web of Conferences, 2018, 219: 05002.[7] Kaewunruen S, Ngamkhanong C, Papaelias M, et al. Wet/dry influence on behaviors of closed-cell polymeric cross-linked foams under static, dynamic and impact loads [J]. Construction and Building Materials, 2018, 187: 1092-1102.[8] Ngo T, Indraratna B. Mitigating ballast degradation with under-sleeper rubber pads: Experimental and numerical perspectives[J]. Computers and Geotechnics, 2020, 122: 103540.[9] 韩旗. 橡胶类材料超弹性力学行为的实验研究和数值模拟[D]. 天津: 河北工业大学, 2018.[10] 何力肯. 基于Prony级数和GHM模型的粘弹性材料动力学分析[D]. 北京: 清华大学, 2013.[11] 周梦雨, 李凡珠, 杨海波, 等. 橡胶材料的非线性黏弹性本构方程[J]. 高分子材料科学与工程, 2020, 36(3): 79-84.[12] 张墨昊, 张江涛, 张梅, 等. 橡胶材料双轴拉伸大变形力学性能实验测试方法研究[J]. 实验力学, 2021, 36(4): 553-562.[13] 彭冬冬. 橡胶材料双向拉伸试样有限元分析及其真双轴拉伸试验装置设计[D]. 青岛: 青岛科技大学, 2020.[14] 刘晓明, 杨晓翔, 周华森. 橡胶双轴拉伸试验机的研制与试验研究[J]. 机械科学与技术, 2019, 38(4): 587-593.[15] Keerthiwansa R, Javo■ík J, Kledrowetz J, et al. Hyperelastic material characterization: A method of reducing the error of using only uniaxial data for fitting Mooney-Rivlin Curve[J]. Materials Science Forum, 2018, 919: 292-298.[16] Mooney M. A theory of large elastic deformation[J]. Journal of Applied Physics, 1940, 11: 582-592.[17] Rivlin R S. Large elastic deformations of isotropic materials(Ⅳ): Further developments of the general theory[J]. Philosophical Transactions of the Royal Society of London (Series A): Mathematical Physical Sciences, 1948, 241: 379-397.[18] Ogden R W. Large deformation isotropic elasticity: On the correlation of theory and experiment for incompressible rubberlike solids[J]. Proceedings of the Royal Society (A): Mathematical, 1972, 326: 565-583.[19] Yeoh O H. Characterization of elastic properties of carbon-black-filled rubber vulcanizates[J]. Rubber Chemistry Technology,1990,63:792-805.[20] Treloar L R G. The elasticity of a network of long-chain molecules(Ⅰ)[J]. Transactions of the Faraday Society, 1946, 39: 36-41.[21] 胡小玲, 刘秀, 李明, 等. 炭黑填充橡胶超弹性本构模型的选取策略[J]. 工程力学, 2014, 31(5): 34-42.

备注/Memo

备注/Memo:
国家重点研发计划项目(2017 YFC 0504703,2016 YFE 0203400)
更新日期/Last Update: 1900-01-01