[1] 胡海华, 李锦山, 朱景芬. 羧基丁腈橡胶的硫化性能[J]. 合成橡胶工业, 2005, 28(5): 336-339.[2] 李晓强, 唐斌, 成奖国. 羧基丁腈橡胶的性能研究[J]. 橡胶工业, 2004, 51(2): 69-73.[3] Barra G M , Crespo J S, Bertolino J R, et al. Maleic anhydride grafting on EPDM: Qualitative and quantitative determination[J]. Journal of the Brazilian Chemical Society, 1999, 10(1): 31-34.[4] Degtyar E, Harrington M J, Politi Y, et al. The mechanical role of metal ions in biogenic protein-based materials[J]. Angewandte Chemie International Edition, 2014, 53(45): 12026-12044.[5] Zhang Xuhui, Liu Jun, Zhang Zhiyu, et al. Toughening elastomers using a mussel-inspired multiphase design[J]. ACS Applied Materials & Interfaces, 2018, 10(28): 23485-23489.[6] Tang Zhenghai, Huang Jing, Guo Baochun, et al. Bioinspired engineering of sacrificial metal-ligand bonds into elastomers with supramechanical performance and adaptive recovery[J]. Macromolecules, 2016, 49(5): 1781-1789.[7] Becker N, Oroudjev E, Mutz S, et al. Molecular nanosprings in spider capture-silk threads[J]. Nature Materials, 2003, 2(4): 278-283.[8] Ambilkar S C, Bansod N D, Kapgate B P, et al. In situ zirconia: A superior reinforcing filler for high-performance nitrile rubber composites[J]. ACS Omega, 2020, 5(14): 7751-7761.[9] Li C, Yuan Z, Ye L. Facile construction of Zn2+-carboxyl salt-bonding as sacrificial unit in EPDM rubber toward mechanical and sealing resilience performance enhancement[J]. Macro-molecular Materials and Engineering, 2021, 306(8): 1-13.[10] Rief M, Gautel M, Oesterhelt F, et al. Reversible unfolding of individual titin immunoglobulin domains by AFM[J]. Science, 1997, 276(5315): 1109-1112.[11] Chung Jaeyoon, Kushner A M, Weisman A C, et al. Direct correlation of single-molecule properties with bulk mechanical performance for the biomimetic design of polymers[J]. Nature Materials, 2014, 13(11): 1055-1062.[12] Harrington M J, Masic A, Holten-Andersen N, et al. Iron-clad fibers: A metal-based biological strategy for hard flexible coa-tings[J]. Science, 2010, 328(5975): 216-220.[13] Holten-Andersen N, Zhao Hua, Waite J H. Stiff coatings on compliant biofibers: The cuticle of Mytilus californianus byssal threads[J]. Biochemistry, 2009, 48(12): 2752-2759.[14] Fantner G E, Oroudjev E, Schitter G, et al. Sacrificial bonds and hidden length: Unraveling molecular mesostructures in tough materials[J]. Biophysical Journal, 2006, 90(4): 1411-1418.[15] Huang Jinhao, Liu Weifeng, Qiu Xueqing, et al. Effects of sacrificial coordination bonds on the mechanical performance of lignin-based thermoplastic elastomer composites[J]. International Journal of Biological Macromolecules, 2021, 183: 1450-1458.[16] Liu Jie, Wang Sheng, Tang Zhenghai, et al. Bioinspired engineering of two different types of sacrificial bonds into chemically cross-linked cis-1,4-polyisoprene toward a high-performance elastomer[J]. Macromolecules, 2016, 49(22): 8593-8604.[17] Li Tianxiang, Chen Songbo, Wan Songhan, et al. The effect of functional zirconium phosphate on aging resistance of nitrile butadiene rubber composites[J]. Polymer Composites, 2020, 41(5): 1867-1877.[18] Liu Yingjun, Tang Zhenghai, Wu Siwu, et al. Integrating sacrificial bonds into dynamic covalent networks toward mechanically robust and malleable elastomers[J]. ACS Macro Letters, 2019, 8(2): 193-199.[19] Li Chengjie, Wang Yujie, Yuan Zun, et al. Construction of sacrificial bonds and hybrid networks in EPDM rubber towards mechanical performance enhancement[J]. Applied Surface Science, 2019, 484: 616-627.[20] Liu Jie, Liu Jun, Wang Sheng, et al. An advanced elastomer with an unprecedented combination of excellent mechanical properties and high self-healing capability[J]. Journal of Materials Chemistry (A): Materials for Energy and Sustainability, 2017, 5(48): 25660-25671.[21] 吴驰飞, 牟海艳, 沈飞, 等. 丁腈橡胶的配位硫化[J]. 高分子通报, 2009, 22(6): 13-21.[22] Yu Haichao, Hao Xingpeng, Zhang Chuanwei, et al. Engineering tough metallosupramolecular hydrogel films with Kirigami structures for compliant soft electronics[J]. Small, 2021, 17(41): 2103836.[23] 张旭辉. 基于多官能交联和牺牲键策略的橡胶增强[D]. 广州: 华南理工大学, 2019.[24] Mayumi K, Marcellan A, Ducouret G, et al. Stress-strain relationship of highly stretchable dual cross-link gels: Separability of strain and time effect[J]. ACS Macro Letters, 2013, 2(12): 1065-1068.[25] 王伟, 邓涛, 赵树高. 橡胶Mooney-Rivlin模型中材料常数的确定[J]. 特种橡胶制品, 2004, 25(4): 8-10.[26] Liu Yingjun, Tang Zhenghai, Wu Siwu, et al. Integrating sacrificial bonds into dynamic covalent networks toward mechanically robust and malleable elastomers[J]. ACS Macro Letters, 2019, 8(2): 193-199.