|本期目录/Table of Contents|

[1]朱绍伊,乔云河,刘英俊,等.基于锆离子(Ⅳ)-羧基金属配位键的高强高韧羧基丁腈橡胶[J].合成橡胶工业,2023,3:204-209.
 ZHU Shao-yi,QIAO Yun-he,LIU Ying-jun,et al.Carboxylated nitrile rubber with high strength and toughness based on metal coordination bonds from tetravalent zirconium cation and carboxyl group[J].China synthetic rubber industy,2023,3:204-209.
点击复制

基于锆离子(Ⅳ)-羧基金属配位键的高强高韧羧基丁腈橡胶(PDF)

《合成橡胶工业》[ISSN:1000-1255/CN:62-1036/TQ]

期数:
2023年3期
页码:
204-209
栏目:
出版日期:
2023-05-15

文章信息/Info

Title:
Carboxylated nitrile rubber with high strength and toughness based on metal coordination bonds from tetravalent zirconium cation and carboxyl group
文章编号:
1000-1255(2023)03-0204-06
作者:
朱绍伊乔云河刘英俊杜爱华?鄢
青岛科技大学 高分子科学与工程学院/橡塑材料与工程教育部重点实验室,山东 青岛 266042
Author(s):
ZHU Shao-yi QIAO Yun-he LIU Ying-jun DU Ai-hua
School of Polymer Science and Engineering/Key Laboratory of Rubber-Plastics of Ministry of Education, Qingdao University of Science and Technology, Qingdao 266042, China
关键词:
羧基丁腈橡胶锆离子(Ⅳ)金属配位键力学性能增强增韧
Keywords:
carboxylated nitrile rubber tetravalent zirconium cation metal coordination bond mechanical property strengthening toughening
分类号:
TQ 333.7
DOI:
DOI:10.19908/j.cnki.ISSN1000-1255.2023.03.0204
文献标识码:
B
摘要:
基于羧基丁腈橡胶(XNBR)中的羧基与Zr4+的配位作用,将ZrOCl2·H2O、硫黄及其他硫化剂与XNBR共混后进行热压硫化,制备了高强高韧的XNBR。结果表明,在硫黄交联的XNBR网络中形成了Zr4+-羧基金属配位键;随着ZrOCl2·H2O用量的增加,硫化胶的拉伸强度、300%定伸应力和断裂能显著提高;当Zr4+与XNBR中羧基的物质的量之比为1/8时,硫化胶的拉伸强度、300%定伸应力和断裂能分别为不含Zr4+硫化胶的250%、400%和250%。究其原因主要是当硫化胶受到拉伸时,Zr4+-羧基金属配位键作为弱键会优先于共价键断裂,在此过程中耗散了大量的能量,从而显著提高了胶料的拉伸强度和韧性。
Abstract:
Based on the coordination interaction between carboxyl group of carboxylated nitrile rubber (XNBR) and Zr4+ from ZrOCl2·H2O, after XNBR was blended with ZrOCl2·H2O, sulfur and other cu-ring agents followed by hot-pressing, XNBR with high strength and toughness was prepared. The results showed that Zr4+-carboxyl group metal coordination bonds formed in the XNBR network crosslinked with sulfur. The tensile strength, modulus at 300% and fracture energy of the vulcanizates were significantly improved with the increase in the addition amount of ZrOCl2·H2O, and when the mole ratio of Zr4+ to carboxyl group of XNBR was 1/8, tensile strength, modulus at 300%, and fracture energy of the vulcanizate were 250%, 400% and 250% of the vulcanizate without Zr4+. The reason was mainly that when the vulcanizate was stretched, Zr4+-carboxyl group metal coordination bond as weak bond would break prior to the covalent bond, and during this process enormous energy was dissipated and therefore tensile strength and toughness of the vulcanizate improved.

参考文献/References

[1] 胡海华, 李锦山, 朱景芬. 羧基丁腈橡胶的硫化性能[J]. 合成橡胶工业, 2005, 28(5): 336-339.[2] 李晓强, 唐斌, 成奖国. 羧基丁腈橡胶的性能研究[J]. 橡胶工业, 2004, 51(2): 69-73.[3] Barra G M , Crespo J S, Bertolino J R, et al. Maleic anhydride grafting on EPDM: Qualitative and quantitative determination[J]. Journal of the Brazilian Chemical Society, 1999, 10(1): 31-34.[4] Degtyar E, Harrington M J, Politi Y, et al. The mechanical role of metal ions in biogenic protein-based materials[J]. Angewandte Chemie International Edition, 2014, 53(45): 12026-12044.[5] Zhang Xuhui, Liu Jun, Zhang Zhiyu, et al. Toughening elastomers using a mussel-inspired multiphase design[J]. ACS Applied Materials & Interfaces, 2018, 10(28): 23485-23489.[6] Tang Zhenghai, Huang Jing, Guo Baochun, et al. Bioinspired engineering of sacrificial metal-ligand bonds into elastomers with supramechanical performance and adaptive recovery[J]. Macromolecules, 2016, 49(5): 1781-1789.[7] Becker N, Oroudjev E, Mutz S, et al. Molecular nanosprings in spider capture-silk threads[J]. Nature Materials, 2003, 2(4): 278-283.[8] Ambilkar S C, Bansod N D, Kapgate B P, et al. In situ zirconia: A superior reinforcing filler for high-performance nitrile rubber composites[J]. ACS Omega, 2020, 5(14): 7751-7761.[9] Li C, Yuan Z, Ye L. Facile construction of Zn2+-carboxyl salt-bonding as sacrificial unit in EPDM rubber toward mechanical and sealing resilience performance enhancement[J]. Macro-molecular Materials and Engineering, 2021, 306(8): 1-13.[10] Rief M, Gautel M, Oesterhelt F, et al. Reversible unfolding of individual titin immunoglobulin domains by AFM[J]. Science, 1997, 276(5315): 1109-1112.[11] Chung Jaeyoon, Kushner A M, Weisman A C, et al. Direct correlation of single-molecule properties with bulk mechanical performance for the biomimetic design of polymers[J]. Nature Materials, 2014, 13(11): 1055-1062.[12] Harrington M J, Masic A, Holten-Andersen N, et al. Iron-clad fibers: A metal-based biological strategy for hard flexible coa-tings[J]. Science, 2010, 328(5975): 216-220.[13] Holten-Andersen N, Zhao Hua, Waite J H. Stiff coatings on compliant biofibers: The cuticle of Mytilus californianus byssal threads[J]. Biochemistry, 2009, 48(12): 2752-2759.[14] Fantner G E, Oroudjev E, Schitter G, et al. Sacrificial bonds and hidden length: Unraveling molecular mesostructures in tough materials[J]. Biophysical Journal, 2006, 90(4): 1411-1418.[15] Huang Jinhao, Liu Weifeng, Qiu Xueqing, et al. Effects of sacrificial coordination bonds on the mechanical performance of lignin-based thermoplastic elastomer composites[J]. International Journal of Biological Macromolecules, 2021, 183: 1450-1458.[16] Liu Jie, Wang Sheng, Tang Zhenghai, et al. Bioinspired engineering of two different types of sacrificial bonds into chemically cross-linked cis-1,4-polyisoprene toward a high-performance elastomer[J]. Macromolecules, 2016, 49(22): 8593-8604.[17] Li Tianxiang, Chen Songbo, Wan Songhan, et al. The effect of functional zirconium phosphate on aging resistance of nitrile butadiene rubber composites[J]. Polymer Composites, 2020, 41(5): 1867-1877.[18] Liu Yingjun, Tang Zhenghai, Wu Siwu, et al. Integrating sacrificial bonds into dynamic covalent networks toward mechanically robust and malleable elastomers[J]. ACS Macro Letters, 2019, 8(2): 193-199.[19] Li Chengjie, Wang Yujie, Yuan Zun, et al. Construction of sacrificial bonds and hybrid networks in EPDM rubber towards mechanical performance enhancement[J]. Applied Surface Science, 2019, 484: 616-627.[20] Liu Jie, Liu Jun, Wang Sheng, et al. An advanced elastomer with an unprecedented combination of excellent mechanical properties and high self-healing capability[J]. Journal of Materials Chemistry (A): Materials for Energy and Sustainability, 2017, 5(48): 25660-25671.[21] 吴驰飞, 牟海艳, 沈飞, 等. 丁腈橡胶的配位硫化[J]. 高分子通报, 2009, 22(6): 13-21.[22] Yu Haichao, Hao Xingpeng, Zhang Chuanwei, et al. Engineering tough metallosupramolecular hydrogel films with Kirigami structures for compliant soft electronics[J]. Small, 2021, 17(41): 2103836.[23] 张旭辉. 基于多官能交联和牺牲键策略的橡胶增强[D]. 广州: 华南理工大学, 2019.[24] Mayumi K, Marcellan A, Ducouret G, et al. Stress-strain relationship of highly stretchable dual cross-link gels: Separability of strain and time effect[J]. ACS Macro Letters, 2013, 2(12): 1065-1068.[25] 王伟, 邓涛, 赵树高. 橡胶Mooney-Rivlin模型中材料常数的确定[J]. 特种橡胶制品, 2004, 25(4): 8-10.[26] Liu Yingjun, Tang Zhenghai, Wu Siwu, et al. Integrating sacrificial bonds into dynamic covalent networks toward mechanically robust and malleable elastomers[J]. ACS Macro Letters, 2019, 8(2): 193-199.

备注/Memo

备注/Memo:
更新日期/Last Update: 1900-01-01