[1] 郑安呐, 管涌, 危大福, 等. 烯烃阴离子聚合发展60年的现状与释疑的努力[J]. 功能高分子学报, 2017, 30(4): 367-421.[2] Kraus G, Childers C W, Gruver J T. Properties of random and block copolymers of butadiene and styrene (I): Dynamic pro-perties and glassy transition temperatures[J]. Journal of Applied Polymer Science, 2010, 11(8): 1581-1591.[3] Schomaker E, Challa G. Complexation of stereoregular poly(methyl methacrylates)(10): Influence of polydispersity in matrix-oligomer systems[J]. Macromolecules, 1986, 19(11): 255-273.[4] Yu Jianming, Dubois P, Jér■me R. Poly[alkyl methacrylate-b-butadiene-b-alkyl methacrylate] triblock copolymers: Synthesis, morphology, and mechanical properties at high temperatures[J]. Macromolecules, 1996, 29(26): 8362-8370.[5] Tong J D, Jér■me R. Synthesis of poly (methyl methacrylate)-b-poly (n-butyl acrylate)-b-poly (methyl methacrylate) triblocks and their potential as thermoplastic elastomers[J]. Polymer, 2000, 41(7): 2499-2510.[6] Tong J D, Moineau G, Leclere P, et al. Synthesis, morphology, and mechanical properties of poly (methyl methacrylate)-b-poly (n-butyl acrylate)-b-poly (methyl methacrylate) triblocks: Ligated anionic polymerization vs atom transfer radical polymerization[J]. Macromolecules, 2000, 33(2): 470-479.[7] Tong J D, Leclere P, Rasmont A, et al. Morphology and rheo-logy of poly (methyl methacrylate)-block-poly (isooctyl acrylate)-block-poly (methyl methacrylate) triblock copolymers, and potential as thermoplastic elastomers[J]. Macromolecular: Chemistry and Physics, 2000, 201(12): 1250-1258.[8] Ariura Fumi. Acrylic block copolymer for adhesive application[J]. Journal of the Adhesion Society of Japan, 2013, 49(9): 336-342.[9] Morishita Y. Applications of acrylic thermoplastic elastomer[J]. Nippon Gomu Kyokaishi, 2013, 86(10): 321-326.[10] Vl■ek P, Lochmann L. Anionic polymerization of (meth) acrylate esters in the presence of stabilizers of active centres[J]. Progress in Polymer Science, 1999, 24(6): 793-873.[11] Kosaka Y, Kitazawa K, Inomata S, et al. Living anionic polymerization of benzofulvene: Highly reactive fixed transoid 1,3-diene[J]. ACS Macro Letters, 2013, 2(2): 164-167.[12] Imaizumi K, Ono T, Natori I, et al. Microphase-separated structure of 1,3-cyclohexadiene/butadiene triblock copolymers and its effect on mechanical and thermal properties[J]. Journal of Polymer Science (Part B): Polymer Physics, 2001, 39(1): 13-22.[13] Natori I, Imaizumi K, Yamagishi H, et al. Hydrocarbon polymers containing six-membered rings in the main chain: Microstructure and properties of poly (1,3-cyclohexadiene)[J]. Journal of Polymer Science (Part B): Polymer Physics, 1998, 36(10): 1657-1668.[14] Kosaka Y, Kawauchi S, Goseki R, et al. High anionic polymerizability of benzofulvene: New exo-methylene hydrocarbon monomer[J]. Macromolecules, 2015, 48(13): 4421-4430.[15] Miyamoto M, Sawamoto M, Higashimura T. Synthesis of monodisperse living poly (vinyl ethers) and block copolymers by the hydrogen iodide/iodine initiating system[J]. Macromolecules, 1984, 17(11): 2228-2230.[16] 武冠英. 阳离子聚合的进展[J]. 高分子通报, 1999(3): 88-93.[17] Aoshima S, Kanaoka S. A renaissance in living cationic polymerization[J]. Chemical Reviews, 2009, 109(11): 5245-5287.[18] Kennedy J P, Midha S, Tsunogae Y. Living carbocationic polymerization (56): Polyisobutylene-containing block polymers by sequential monomer addition; (8): Synthesis, characterization, and physical properties of poly (indene-b-isobutylene-b-indene) thermoplastic elastomers[J]. Macromolecules, 1993, 26(3): 429-435.[19] Puskas J E, Kaszas G, Kennedy J P, et al. Polyisobutylene-containing block polymers by sequential monomer addition (IV): New triblock thermoplastic elastomers comprising high Tg styrenic glassy segments: Synthesis, characterization and physical properties[J]. Journal of Polymer Science (Part A): Polymer Chemistry, 1992, 30(1): 41-48.[20] Tsunogae Y, Kennedy J P. Polyisobutylene-containing block polymers by sequential monomer addition (Ⅹ): Synthesis of poly (α-methylstyrene-b-isobutylene-b-α-methylstyrene) thermoplastic elastomers[J]. Journal of Polymer Science (Part A): Polymer Chemistry, 1994, 32(3): 403-412.[21] Li Dawei, Faust R. Polyisobutylene-based thermoplastic elastomers (3): Synthesis, characterization, and properties of poly (alpha-methylstyrene-b-isobutylene-b-alpha-methylstyrene) triblock copolymers[J]. Macromolecules, 1995, 28(14): 4893-4898.[22] Cao Xianyi, Sipos L, Faust R. Polyisobutylene based thermoplastic elastomers (Ⅵ): Poly (α-methylstyrene-b-isobutylene-b-α-methylstyrene) triblock copolymers by coupling of living poly (α-methylstyrene-b-isobutylene) diblock copolymers[J]. Polymer Bulletin, 2000, 45(2): 121-128.[23] Gao Bo, Kops J. Synthesis of tri-block copolymer based on polyisobutylene and poly (ethylene glycol)[J]. Polymer Bulletin, 1995, 34(3): 279-286.[24] Jacob S, Kennedy J P. Synthesis and characterization of novel octa-arm star-block thermoplastic elastomers consisting of poly (p-chlorostyrene-b-isobutylene) arms radiating from a calix [8] arene core[J]. Polymer Bulletin, 1998, 41(2): 167-174.[25] Puskas J E, Dos Santos L M, Orlowski E. Polyisobutylene-based thermoplastic biorubbers[J]. Rubber Chemistry and Technology, 2010, 83(3): 235-246.[26] Pinchuk L, Nott S, Schwarz M, et al. Drug delivery compositions and medical devices containing block copolymer: US, 6855770[P]. 2005-02-15.[27] Zhou Yonghua, Faust R, Chen Shujun, et al. Synthesis, cha-racterization, and morphology of poly (tert-butyl vinyl ether-b-isobutylene-b-tert-butyl vinyl ether) triblock copolymers[J]. Macromolecules, 2004, 37(18): 6716-6725.[28] Zhou Yonghua, Faust R, Richard R, et al. Syntheses and characterization of poly (cyclohexyl vinyl ether-stat-vinyl alcohol)-b-polyisobutylene-b-poly (cyclohexyl vinyl ether-stat-vinyl alcohol) triblock copolymers and their application as coatings to deliver paclitaxel from coronary stents[J]. Macromolecules, 2005, 38(20): 8183-8191.[29] Hashimoto T, Imaeda T, Irie S, et al. Synthesis of poly (vinyl ether)-based, ABA triblock-type thermoplastic elastomers with functionalized soft segments and their gas permeability[J]. Journal of Polymer Science (Part A): Polymer Chemistry, 2015, 53(9): 1114-1124.[30] Imaeda T, Hashimoto T, Irie S, et al. Synthesis of ABA-triblock and star-diblock copolymers with poly (2-adamantyl vinyl ether) and poly (n-butyl vinyl ether) segments: New thermoplastic elastomers composed solely of poly (vinyl ether) backbones[J]. Journal of Polymer Science (Part A): Polymer Chemistry, 2013, 51(8): 1796-1807.[31] Powell C E, Qiao G G. Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases[J]. Journal of Membrane Science, 2006, 279(1/2): 1-49.[32] Robeson L M. The upper bound revisited[J]. Journal of Membrane Science, 2008, 320(1/2): 390-400.[33] Hillmyer M A, Tolman W B. Aliphatic polyester block polymers: Renewable, degradable, and sustainable[J]. Accounts of Chemical Research, 2014, 47(8): 2390-2396.[34] Pan Pengju, Inoue Y. Polymorphism and isomorphism in biodegradable polyesters[J]. Progress in Polymer Science, 2009, 34(7): 605-640.[35] Tsuji H. Poly (lactide) stereocomplexes: Formation, structure, properties, degradation, and applications[J]. Macromolecular Bioscience, 2005, 5(7): 569-597.[36] Wanamaker C L, Tolman W B, Hillmyer M A. Poly (d-lactide)-poly (menthide)-poly (d-lactide) triblock copolymers as crystal nucleating agents for poly (l-lactide)[C]//Macromolecular Symposia. Weinheim: WILEY-VCH Verlag, 2009, 283(1): 130-138.[37] Wanamaker C L, Bluemle M J, Pitet L M, et al. Consequences of polylactide stereochemistry on the properties of polylactide-polymenthide-polylactide thermoplastic elastomers[J]. Biomacromolecules, 2009, 10(10): 2904-2911.[38] Suenaga J, Sutherlin D M, Stille J K. Polymerization of (RS)- and (R)-α-methylene-γ-methyl-γ-butyrolactone[J]. Macromolecules, 1984, 17(12): 2913-2916.[39] Shin J, Lee Y, Tolman W B, et al. Thermoplastic elastomers derived from menthide and tulipalin A[J]. Biomacromolecules, 2012, 13(11): 3833-3840.[40] Satoh K, Lee D H, Nagai K, et al. Precision synthesis of bio-based acrylic thermoplastic elastomer by RAFT polymerization of itaconic acid derivatives[J]. Macromolecular Rapid Communications, 2014, 35(2): 161-167.[41] Luo Yingwu, Wang Xiaoguang, Zhu Yue, et al. Polystyrene-block-poly (n-butyl acrylate)-block-polystyrene triblock copolymer thermoplastic elastomer synthesized via RAFT emulsion polymerization[J]. Macromolecules, 2010, 43(18): 7472-7481.[42] Liu Tao, Ye Lin. Synthesis and properties of fluorinated thermoplastic polyurethane elastomer[J]. Journal of Fluorine Chemistry, 2010, 131(1): 36-41.[43] 王作龄. 聚氨酯弹性体的最新动向[J]. 橡胶参考资料, 2006, 36(1): 28-30.[44] Lee D K, Tsai H B, Tsai R S, et al. Preparation and properties of transparent thermoplastic segmented polyurethanes derived from different polyols[J]. Polymer Engineering and Science, 2007, 47(5): 695-701.[45] Peebles Jr L H. Sequence length distribution in segmented block copolymers[J]. Macromolecules, 1974, 7(6): 872-882.[46] Wang Wenwen, Wang Weiyu, Lu Xinyi, et al. Synthesis and characterization of comb and centipede multigraft copolymers PnBA-g-PS with high molecular weight using miniemulsion polymerization[J]. Macromolecules, 2014, 47: 7284-7295.[47] Fónagy T, Iván B, Szesztay M. Polyisobutylene-graft-polystyrene by quasiliving atom transfer radical polymerization of styrene from poly (isobutylene-co-p-methylstyrene-co-p-bromomethylstyrene)[J]. Macromolecular Rapid Communications, 1998, 19(9): 479-483.[48] Suksawad P, Yamamoto Y, Kawahara S. Preparation of thermoplastic elastomer from natural rubber grafted with polystyrene[J]. European Polymer Journal, 2011, 47(3): 330-337.[49] Zhou Cheng, Wei Zhiyong, Wang Yanshai, et al. Fully biobased thermoplastic elastomers: Synthesis of highly branched star comb poly (β-myrcene)-graft-poly (l-lactide) copolymers with tunable mechanical properties[J]. European Polymer Journal, 2018, 99: 477-484.[50] Folmer B J B, Sijbesma R P, Versteegen R M, et al. Supramolecular polymer materials: Chain extension of telechelic polymers using a reactive hydrogen-bonding synthon[J]. Advanced Materials, 2000, 12(12): 874-878.[51] Sivakova S, Bohnsack D A, Mackay M E, et al. Utilization of a combination of weak hydrogen-bonding interactions and phase segregation to yield highly thermosensitive supramolecular polymers[J]. Journal of the American Chemical Society, 2005, 127(51): 18202-18211.[52] Mather B D, Baker M B, Beyer F L, et al. Supramolecular triblock copolymers containing complementary nucleobase mole-cular recognition[J]. Macromolecules, 2007, 40(19): 6834-6845.[53] Hayashi M, Noro A, Matsushita Y. Highly extensible supramolecular elastomers with large stress generation capability originating from multiple hydrogen bonds on the long soft network strands[J]. Macromolecular Rapid Communications, 2016, 37(8): 678-684.[54] Chen Yulin, Kushner A M, Williams G A, et al. Multiphase design of autonomic self-healing thermoplastic elastomers[J]. Nature Chemistry, 2012, 4(6): 467-472.[55] Mozhdehi D, Ayala S, Cromwell O R, et al. Self-healing multiphase polymers via dynamic metal-ligand interactions[J]. Journal of the American Chemical Society, 2014, 136(46): 16128-16131.