|本期目录/Table of Contents|

[1]张 昊,张华强,刘若凡,等.活性可控聚合制备热塑性弹性体研究进展[J].合成橡胶工业,2023,1:75-80.
 ZHANG hao,ZHANG Hua-qiang,LIU Ruo-fan,et al.Research progress in preparation of thermoplastic elastomers by living controlled polymerization[J].China synthetic rubber industy,2023,1:75-80.
点击复制

活性可控聚合制备热塑性弹性体研究进展(PDF)

《合成橡胶工业》[ISSN:1000-1255/CN:62-1036/TQ]

期数:
2023年1期
页码:
75-80
栏目:
出版日期:
2023-01-15

文章信息/Info

Title:
Research progress in preparation of thermoplastic elastomers by living controlled polymerization
文章编号:
1000-1255(2023)01-0075-06
作者:
张 昊1张华强2刘若凡1赵志超2金玉顺1李福崇2伍一波1?鄢
1. 北京石油化工学院 新材料与化工学院/特种弹性体复合材料北京市重点实验室,北京 102617;2. 中国石油石油化工研究院 兰州化工研究中心,兰州 730060
Author(s):
ZHANG hao1 ZHANG Hua-qiang2 LIU Ruo-fan1 ZHAO Zhi-chao2 JIN Yu-shun1 LI Fu-chong2 WU Yi-bo1
1.College of New Materials and Chemical Engineering/Beijing Key Lab of Special Elastomeric Composite Materials, Beijing Institute of Petrochemical Technology, Beijing 102617, China; 2. Lanzhou Chemical Research Center, Petrochemical Research Institute, PetroChina, Lanzhou 730060, China
关键词:
热塑性弹性体活性可控聚合负离子聚合正离子聚合超分子化学综述
Keywords:
thermoplastic elastomer active controlled polymerization anionic polymerization cationic polymerization supramolecular chemistry review
分类号:
TQ 334
DOI:
DOI:10.19908/j.cnki.ISSN1000-1255.2023.01.0075
文献标识码:
A
摘要:
从负离子聚合、正离子聚合、开环聚合、可控自由基聚合等聚合方法入手,总结了不同类型热塑性弹性体合成技术的研究进展,以及其他如超分子化学与聚合物合成相结合等热塑性弹性体研究的新领域和新方向。
Abstract:
Starting with polymerization methods such as anionic polymerization, cationic polymerization, ring-opening polymerization, and controlled free radical polymerization, the research progress of different types of thermoplastic elastomer synthesis technology was summarized with 55 references, as well as other new fields and new directions of thermoplastic elastomer research progress such as the combination of supramolecular chemistry and polymer synthesis.

参考文献/References

[1] 郑安呐, 管涌, 危大福, 等. 烯烃阴离子聚合发展60年的现状与释疑的努力[J]. 功能高分子学报, 2017, 30(4): 367-421.[2] Kraus G, Childers C W, Gruver J T. Properties of random and block copolymers of butadiene and styrene (I): Dynamic pro-perties and glassy transition temperatures[J]. Journal of Applied Polymer Science, 2010, 11(8): 1581-1591.[3] Schomaker E, Challa G. Complexation of stereoregular poly(methyl methacrylates)(10): Influence of polydispersity in matrix-oligomer systems[J]. Macromolecules, 1986, 19(11): 255-273.[4] Yu Jianming, Dubois P, Jér■me R. Poly[alkyl methacrylate-b-butadiene-b-alkyl methacrylate] triblock copolymers: Synthesis, morphology, and mechanical properties at high temperatures[J]. Macromolecules, 1996, 29(26): 8362-8370.[5] Tong J D, Jér■me R. Synthesis of poly (methyl methacrylate)-b-poly (n-butyl acrylate)-b-poly (methyl methacrylate) triblocks and their potential as thermoplastic elastomers[J]. Polymer, 2000, 41(7): 2499-2510.[6] Tong J D, Moineau G, Leclere P, et al. Synthesis, morphology, and mechanical properties of poly (methyl methacrylate)-b-poly (n-butyl acrylate)-b-poly (methyl methacrylate) triblocks: Ligated anionic polymerization vs atom transfer radical polymerization[J]. Macromolecules, 2000, 33(2): 470-479.[7] Tong J D, Leclere P, Rasmont A, et al. Morphology and rheo-logy of poly (methyl methacrylate)-block-poly (isooctyl acrylate)-block-poly (methyl methacrylate) triblock copolymers, and potential as thermoplastic elastomers[J]. Macromolecular: Chemistry and Physics, 2000, 201(12): 1250-1258.[8] Ariura Fumi. Acrylic block copolymer for adhesive application[J]. Journal of the Adhesion Society of Japan, 2013, 49(9): 336-342.[9] Morishita Y. Applications of acrylic thermoplastic elastomer[J]. Nippon Gomu Kyokaishi, 2013, 86(10): 321-326.[10] Vl■ek P, Lochmann L. Anionic polymerization of (meth) acrylate esters in the presence of stabilizers of active centres[J]. Progress in Polymer Science, 1999, 24(6): 793-873.[11] Kosaka Y, Kitazawa K, Inomata S, et al. Living anionic polymerization of benzofulvene: Highly reactive fixed transoid 1,3-diene[J]. ACS Macro Letters, 2013, 2(2): 164-167.[12] Imaizumi K, Ono T, Natori I, et al. Microphase-separated structure of 1,3-cyclohexadiene/butadiene triblock copolymers and its effect on mechanical and thermal properties[J]. Journal of Polymer Science (Part B): Polymer Physics, 2001, 39(1): 13-22.[13] Natori I, Imaizumi K, Yamagishi H, et al. Hydrocarbon polymers containing six-membered rings in the main chain: Microstructure and properties of poly (1,3-cyclohexadiene)[J]. Journal of Polymer Science (Part B): Polymer Physics, 1998, 36(10): 1657-1668.[14] Kosaka Y, Kawauchi S, Goseki R, et al. High anionic polymerizability of benzofulvene: New exo-methylene hydrocarbon monomer[J]. Macromolecules, 2015, 48(13): 4421-4430.[15] Miyamoto M, Sawamoto M, Higashimura T. Synthesis of monodisperse living poly (vinyl ethers) and block copolymers by the hydrogen iodide/iodine initiating system[J]. Macromolecules, 1984, 17(11): 2228-2230.[16] 武冠英. 阳离子聚合的进展[J]. 高分子通报, 1999(3): 88-93.[17] Aoshima S, Kanaoka S. A renaissance in living cationic polymerization[J]. Chemical Reviews, 2009, 109(11): 5245-5287.[18] Kennedy J P, Midha S, Tsunogae Y. Living carbocationic polymerization (56): Polyisobutylene-containing block polymers by sequential monomer addition; (8): Synthesis, characterization, and physical properties of poly (indene-b-isobutylene-b-indene) thermoplastic elastomers[J]. Macromolecules, 1993, 26(3): 429-435.[19] Puskas J E, Kaszas G, Kennedy J P, et al. Polyisobutylene-containing block polymers by sequential monomer addition (IV): New triblock thermoplastic elastomers comprising high Tg styrenic glassy segments: Synthesis, characterization and physical properties[J]. Journal of Polymer Science (Part A): Polymer Chemistry, 1992, 30(1): 41-48.[20] Tsunogae Y, Kennedy J P. Polyisobutylene-containing block polymers by sequential monomer addition (Ⅹ): Synthesis of poly (α-methylstyrene-b-isobutylene-b-α-methylstyrene) thermoplastic elastomers[J]. Journal of Polymer Science (Part A): Polymer Chemistry, 1994, 32(3): 403-412.[21] Li Dawei, Faust R. Polyisobutylene-based thermoplastic elastomers (3): Synthesis, characterization, and properties of poly (alpha-methylstyrene-b-isobutylene-b-alpha-methylstyrene) triblock copolymers[J]. Macromolecules, 1995, 28(14): 4893-4898.[22] Cao Xianyi, Sipos L, Faust R. Polyisobutylene based thermoplastic elastomers (Ⅵ): Poly (α-methylstyrene-b-isobutylene-b-α-methylstyrene) triblock copolymers by coupling of living poly (α-methylstyrene-b-isobutylene) diblock copolymers[J]. Polymer Bulletin, 2000, 45(2): 121-128.[23] Gao Bo, Kops J. Synthesis of tri-block copolymer based on polyisobutylene and poly (ethylene glycol)[J]. Polymer Bulletin, 1995, 34(3): 279-286.[24] Jacob S, Kennedy J P. Synthesis and characterization of novel octa-arm star-block thermoplastic elastomers consisting of poly (p-chlorostyrene-b-isobutylene) arms radiating from a calix [8] arene core[J]. Polymer Bulletin, 1998, 41(2): 167-174.[25] Puskas J E, Dos Santos L M, Orlowski E. Polyisobutylene-based thermoplastic biorubbers[J]. Rubber Chemistry and Technology, 2010, 83(3): 235-246.[26] Pinchuk L, Nott S, Schwarz M, et al. Drug delivery compositions and medical devices containing block copolymer: US, 6855770[P]. 2005-02-15.[27] Zhou Yonghua, Faust R, Chen Shujun, et al. Synthesis, cha-racterization, and morphology of poly (tert-butyl vinyl ether-b-isobutylene-b-tert-butyl vinyl ether) triblock copolymers[J]. Macromolecules, 2004, 37(18): 6716-6725.[28] Zhou Yonghua, Faust R, Richard R, et al. Syntheses and characterization of poly (cyclohexyl vinyl ether-stat-vinyl alcohol)-b-polyisobutylene-b-poly (cyclohexyl vinyl ether-stat-vinyl alcohol) triblock copolymers and their application as coatings to deliver paclitaxel from coronary stents[J]. Macromolecules, 2005, 38(20): 8183-8191.[29] Hashimoto T, Imaeda T, Irie S, et al. Synthesis of poly (vinyl ether)-based, ABA triblock-type thermoplastic elastomers with functionalized soft segments and their gas permeability[J]. Journal of Polymer Science (Part A): Polymer Chemistry, 2015, 53(9): 1114-1124.[30] Imaeda T, Hashimoto T, Irie S, et al. Synthesis of ABA-triblock and star-diblock copolymers with poly (2-adamantyl vinyl ether) and poly (n-butyl vinyl ether) segments: New thermoplastic elastomers composed solely of poly (vinyl ether) backbones[J]. Journal of Polymer Science (Part A): Polymer Chemistry, 2013, 51(8): 1796-1807.[31] Powell C E, Qiao G G. Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases[J]. Journal of Membrane Science, 2006, 279(1/2): 1-49.[32] Robeson L M. The upper bound revisited[J]. Journal of Membrane Science, 2008, 320(1/2): 390-400.[33] Hillmyer M A, Tolman W B. Aliphatic polyester block polymers: Renewable, degradable, and sustainable[J]. Accounts of Chemical Research, 2014, 47(8): 2390-2396.[34] Pan Pengju, Inoue Y. Polymorphism and isomorphism in biodegradable polyesters[J]. Progress in Polymer Science, 2009, 34(7): 605-640.[35] Tsuji H. Poly (lactide) stereocomplexes: Formation, structure, properties, degradation, and applications[J]. Macromolecular Bioscience, 2005, 5(7): 569-597.[36] Wanamaker C L, Tolman W B, Hillmyer M A. Poly (d-lactide)-poly (menthide)-poly (d-lactide) triblock copolymers as crystal nucleating agents for poly (l-lactide)[C]//Macromolecular Symposia. Weinheim: WILEY-VCH Verlag, 2009, 283(1): 130-138.[37] Wanamaker C L, Bluemle M J, Pitet L M, et al. Consequences of polylactide stereochemistry on the properties of polylactide-polymenthide-polylactide thermoplastic elastomers[J]. Biomacromolecules, 2009, 10(10): 2904-2911.[38] Suenaga J, Sutherlin D M, Stille J K. Polymerization of (RS)- and (R)-α-methylene-γ-methyl-γ-butyrolactone[J]. Macromolecules, 1984, 17(12): 2913-2916.[39] Shin J, Lee Y, Tolman W B, et al. Thermoplastic elastomers derived from menthide and tulipalin A[J]. Biomacromolecules, 2012, 13(11): 3833-3840.[40] Satoh K, Lee D H, Nagai K, et al. Precision synthesis of bio-based acrylic thermoplastic elastomer by RAFT polymerization of itaconic acid derivatives[J]. Macromolecular Rapid Communications, 2014, 35(2): 161-167.[41] Luo Yingwu, Wang Xiaoguang, Zhu Yue, et al. Polystyrene-block-poly (n-butyl acrylate)-block-polystyrene triblock copolymer thermoplastic elastomer synthesized via RAFT emulsion polymerization[J]. Macromolecules, 2010, 43(18): 7472-7481.[42] Liu Tao, Ye Lin. Synthesis and properties of fluorinated thermoplastic polyurethane elastomer[J]. Journal of Fluorine Chemistry, 2010, 131(1): 36-41.[43] 王作龄. 聚氨酯弹性体的最新动向[J]. 橡胶参考资料, 2006, 36(1): 28-30.[44] Lee D K, Tsai H B, Tsai R S, et al. Preparation and properties of transparent thermoplastic segmented polyurethanes derived from different polyols[J]. Polymer Engineering and Science, 2007, 47(5): 695-701.[45] Peebles Jr L H. Sequence length distribution in segmented block copolymers[J]. Macromolecules, 1974, 7(6): 872-882.[46] Wang Wenwen, Wang Weiyu, Lu Xinyi, et al. Synthesis and characterization of comb and centipede multigraft copolymers PnBA-g-PS with high molecular weight using miniemulsion polymerization[J]. Macromolecules, 2014, 47: 7284-7295.[47] Fónagy T, Iván B, Szesztay M. Polyisobutylene-graft-polystyrene by quasiliving atom transfer radical polymerization of styrene from poly (isobutylene-co-p-methylstyrene-co-p-bromomethylstyrene)[J]. Macromolecular Rapid Communications, 1998, 19(9): 479-483.[48] Suksawad P, Yamamoto Y, Kawahara S. Preparation of thermoplastic elastomer from natural rubber grafted with polystyrene[J]. European Polymer Journal, 2011, 47(3): 330-337.[49] Zhou Cheng, Wei Zhiyong, Wang Yanshai, et al. Fully biobased thermoplastic elastomers: Synthesis of highly branched star comb poly (β-myrcene)-graft-poly (l-lactide) copolymers with tunable mechanical properties[J]. European Polymer Journal, 2018, 99: 477-484.[50] Folmer B J B, Sijbesma R P, Versteegen R M, et al. Supramolecular polymer materials: Chain extension of telechelic polymers using a reactive hydrogen-bonding synthon[J]. Advanced Materials, 2000, 12(12): 874-878.[51] Sivakova S, Bohnsack D A, Mackay M E, et al. Utilization of a combination of weak hydrogen-bonding interactions and phase segregation to yield highly thermosensitive supramolecular polymers[J]. Journal of the American Chemical Society, 2005, 127(51): 18202-18211.[52] Mather B D, Baker M B, Beyer F L, et al. Supramolecular triblock copolymers containing complementary nucleobase mole-cular recognition[J]. Macromolecules, 2007, 40(19): 6834-6845.[53] Hayashi M, Noro A, Matsushita Y. Highly extensible supramolecular elastomers with large stress generation capability originating from multiple hydrogen bonds on the long soft network strands[J]. Macromolecular Rapid Communications, 2016, 37(8): 678-684.[54] Chen Yulin, Kushner A M, Williams G A, et al. Multiphase design of autonomic self-healing thermoplastic elastomers[J]. Nature Chemistry, 2012, 4(6): 467-472.[55] Mozhdehi D, Ayala S, Cromwell O R, et al. Self-healing multiphase polymers via dynamic metal-ligand interactions[J]. Journal of the American Chemical Society, 2014, 136(46): 16128-16131.

备注/Memo

备注/Memo:
更新日期/Last Update: 2023-01-15