[1] Kim B K, Youn S K, Lee W S. A constitutive model and FEA of rubber under small oscillatory load superimposed on largestatic deformation[J]. Archive of Applied Mechanics, 2004, 73: 781-798.[2] Yeoh O H. Some forms of the strain energy function for rubber[J]. Rubber Chemistry and Technology, 2012, 66: 754-771.[3] Ropers S, Kardos M, Osswald T A. A thermo-viscoelastic approach for the characterization and modeling of the bending behavior of thermoplastic composties[J]. Composites (Part A): Applied Science and Manufacturing, 2016, 90: 22-32.[4] Tayeb A, Arfaoui M, Zine A, et al. On the nonlinear viscoelastic behavior of rubeer like materisals: Constitutive description and identification[J]. International Journal of Mechanical Sciences, 2017, 130: 437-447.[5] Ramier J, Gauthier C, Chazeau L, et al. Payne effect in silica-filled styrene-butadiene rubber: Influence of surface treatment[J]. Journal of Polymer Science (Part B): Polymer Physics, 2010, 45(3): 286-298.[6] 常海岩, 徐艺, 倪淑杰. 存放时间及胶种和补强填料对胶料流变特性的影响[J]. 轮胎工业, 2019, 39: 312-314.[7] Wolff S. Chemical aspects of rubber reinforcement by fillers[J]. Rubber Chemistry and Technology, 1996, 69(3): 325-346.[8] Wolff S, Wang M J, Tan E H. The effect of filler-elastomer and filler network structure on rubber reinforcement[J]. Kautschuk Gummi Kunststoffe, 1994, 47(2): 102-107.[9] 张帅, 赵素合, 吴友平, 等. 不同填料填充集成橡胶对复合材料动态粘弹性能的影响[J]. 橡胶工业, 2015, 62(5): 261-266.[10] Andre M, Wriggers P. Thermo-mechanical behaviour of rubber materials during vulcanization[J]. International Journal of Solids and Structures, 2005, 42(16): 4758-4778.[11] 冯希金, 危银涛, 李志超, 等. 未硫化橡胶非线性粘弹性本构模型研究[J]. 工程力学, 2016, 33(7): 212-219.[12] 于海富. 橡胶材料本构方程的研究[D]. 北京: 北京化工大学, 2017.[13] Menard K P. Dynamic mechanial analysis: Apractical introduction[J]. Biopolymers, 1999, 336(12): 113-120.[14] 尹博渊. 炭黑填充橡胶黏弹性的理论与实验研究[D]. 湘潭: 湘潭大学, 2018.[15] 李其抚. 固态高聚物动静态黏弹性的实验研究[D]. 湘潭: 湘潭大学, 2009.[16] 过梅丽. 髙聚物与复合材料的动态力学热分析[M]. 北京: 化学工业出版社, 2002: 68-74.[17] 向平, 李豪祥, 宋昊, 等. 压力与温度对炭黑填充丁苯橡胶复合材料动静态性质影响的分子模拟[J]. 高分子材料科学与工程, 2021, 37(3): 93-99.[18] Gent A N, Hindi M. Effect of oxygen on the tear strength of elastomers[J]. Rubber Chemistry and Technology, 1990, 63(3): 123-134.[19] Choi Sungseen, Kim Jongchul. Life time prediction and thermal aging be haviors of SBR and NBR composites using crosslink density changes[J]. Journal of Industrial and Engineering Chemistry, 2012, 18(3): 1166-1170. [20] 罗文波, 唐欣, 李其抚. 物理老化对玻璃态高聚物非线性蠕变行为的影响[J]. 固体力学学报, 2008, 29(1): 104-108.[21] Lake G J, Lindley P B. The mechanical fatigue limit for rubber[J]. Rubber Chemistry and Technology, 1969, 39(6): 348-364.[22] Isayev A I, Wong C M, Zeng X. Effect of oscillations during extrusion on rheology and mechanical properties of polymers[J]. Advances in Polymer Technology, 1990, 10(1): 31-45.[23] Isayev A I, Fan Xiyun. Viscoelastic plastic constitutive equation for flow of particle filled polymers[J]. Journal of Rheology, 1990, 34(1): 35-54.[24] 陈玉, 成斌, 肖玉, 等. 泡沫橡胶类材料有限变形粘弹性本构模型[J]. 橡胶工业, 2017, 64(4): 197-201.[25] 于海富, 李凡珠, 杨海波, 等. 有限变形下橡胶材料非线性高弹-粘弹性本构模型[J]. 橡胶工业, 2017, 64(11): 645-649.[26] 李世其, 胡线会, 朱文革, 等. 定频变温下粘弹材料动力学特性数据拟合分析[J]. 材料科学与工程学报, 2010, 28(6): 839-842.[27] Metzler R, Nonnenmacher T F. Fractional relaxation processes and factional rheological models for the description of a class of viscoelastic materials[J]. International Journal of Plasticity, 2003, 19: 941-959.[28] Peng Miaojuan, Xu Zhihong. Research on nonlinear constitutive relationship of permanent deformation in asphalt pavements[J]. Science in China, 2006, 49(6): 671-682.[29] Del Nobile M A, Chillo S, Mentana A, et al. Use of the gene-ralized Maxwell model for describing the stress relaxation behavior of solid-like foods[J]. Journal of Food Engineering, 2007, 78(3): 978-983.[30] Singh M P, Chang T S. Seismic analysis of structures with viscoelastic dampers[J]. Journal of Engineering Mechanics, 2009, 135: 571-580.[31] Chang T -S, Singh M P. Mechanical model parameters for viscoelastic dampers[J]. Journal of Engineering Mechanics, 2009, 135(6): 581-584.[32] Haupt P, Lion A, Backhaus E. On the dynamic behaviour of polymers under finete strains: Constitutive modelling and identification of parameters[J]. International Journal of Solids and Structures, 2000, 37(26): 3633-3646.[33] 帅词俊, 段吉安, 王炯. 关于黏弹性材料的广义Maxwell模型[J]. 力学学报, 2006, 38(4): 565-569.[34] Ronald L, Bagley R L, Torvik P J, et al. Fractional calculus in the transient analysis of viscoelastically damped structures[J]. American Institute of Aeronautics and Astronautics Journal, 1985, 23(6): 201-210.[35] Park S W. Analytical modeling of viscoelastic dampers for structural and vibration control[J]. International Journal of Solids and Structures, 2001, 38: 8065-8092.[36] 银花, 陈宁. 分数阶导数粘弹性模型的有限元法[J]. 计算力学学报, 2012, 29(6): 966-971.[37] 杨小军. 广义分数阶粘弹性力学的理论研究[D]. 徐州: 中国矿业大学, 2017.[38] Koeller R C. Applications of fractional calculus to the theory of viscoelasticity[J]. Journal of Applied Mechanics, 1984, 51(2): 299-307.[39] 方建敏. 橡胶材料的分数导数型本构模型研究及动力学应用[D]. 南京: 南京航空航天大学, 2015.[40] Luo Wenbo, Hu Xiaoling, Wang Chuhong, et al. Frequency and strain-amplitude-dependent dynamical mechanical properties and hysteresis loss of CB-filled vulcanized natural rubber[J]. International Journal of Mechanical Sciences, 2010, 52(2): 168-174.[41] Bagley R L, Torvik P J. On the fractional calculus model of viscoelastic behavior[J]. Journal of Rheology, 1998, 30(1): 133-155.[42] Pritz T. Verification of local Kramers-Kronig relations for complex modulus by means of fractional derivative model[J]. Journal of Sound and Vibration, 1999, 228(5): 1145-1165.[43] Yin Boyuan, Hu Xiaoling, Luo Wenbo, et al. Application of fractional calculus methods to asymmetric dynamical response of CB-filled rubber[J]. Polymer Testing, 2017, 61: 416-420.[44] 何松林, 俞安, 任杰. 橡胶粘弹形分数导数本构模型合理性研究[J]. 昆明学院学报, 2020, 42(6): 78-83.[45] Wollscheid D, Lion A. The benefit of fractional derivatives in modelling the dynamics derivatives in modelling the dynamics of filler-reinforced rubber under large strains: A comparison with the Maxwell element approach[J]. Computational Mechanics, 2014, 53(5): 1015-1031.[46] Makris N, Constantinou M C. Fractional-derivative Maxwell model for viscous dampers[J]. Journal of Structural Enginee-ring, 1991, 117(9): 2708-2724.[47] Papoulia K D, Panoskaltsis V P, Kurup N V, et al. Rheological representation of fractional order viscoelastic material models[J]. Rheologica Acta, 2010, 49(4): 381-400.[48] Song Daoyun, Jiang Tiqian. Study on the constitutive equation with fractional derivative for the viscoelastic fluids modified Jeffreys model and its application[J]. Rheologica Acta, 1998, 37(5): 512-517.[49] Atanackovic T M. A modified zener model of a viscoelastic body[J]. Continuum Mechanics and Thermodynamics, 2002, 14(2): 137-148.[50] Arikoglu A. A new fractional derivative model for linearly viscoelastic materials and parameter identification via genatic algorithms[J]. Rheologica Acta, 2014, 53(3): 219-233.[51] Hanyga A. Fractional-order relaxation laws in non-linear viscoelasticity[J]. Continuum Mechanics and Thermodynamics, 2007, 19(1/2): 25-36.[52] Heymans N. Fractional calculus description of non-linear viscoelastic behaviour of polymers[J]. Nonlinear Dynamics, 2004, 38(1/2/3/4): 221-231.[53] 于海富, 李凡珠, 杨海波, 等. 橡胶材料非线性高弹-粘弹性本构模型的研究[J]. 橡胶工业, 2017, 64(12): 719-723.[54] Yang L W, Shim V P W, Lim C T. A visco-hyperlastic approach to modeling the constitutive behavior of rubber[J]. International Journal of Impact Engineering, 2000, 24: 545-560.[55] 周相荣, 胡荣华, 王宝珍, 等. 一种描述温度与应变率效应的大应变非线性热粘超弹本构模型[J]. 振动与冲击, 2007, 26(10): 11-15.[56] Fukunaga M, Shimizu N, Nasuno H. A nonlinear fractional derivative model of impulse motion for viscoelastic materials[J]. Physica Scripta, 2009, 136: 014010.[57] Kaliske M, Zopf C, Brüggemann C. Experimental characterization and constitutive modeling of the mechanical properties of uncured rubber[J]. Rubber Chemistry and Technology, 2010, 83(1): 1-15.[58] 初红艳, 孙冬明, 陈其, 等. 橡胶超弹-黏弹模型建立及结构动态响应[J]. 北京工业大学学报. 2019, 45(10): 927-936.[59] 周梦雨, 李凡珠, 海波, 等. 橡胶材料的非线性黏弹性本构方程[J]. 高分子材料科学与工程. 2020, 36(3): 79-84.[60] 杨挺青, 罗文波, 徐平, 等. 粘弹性理论与应用[M]. 北京: 科学出版社, 2004: 19-43.[61] 中国石油和化学工业协会. GB/T 1685—2008硫化橡胶或热塑性橡胶在常温和高温下压缩应力松弛的测定[S]. 北京: 中国标准出版社, 2008: 1-6.[62] 中国石油和化学工业协会. GB/T 19242—2003硫化橡胶在压缩或剪切状态下蠕变的测定[S]. 北京: 中国标准出版社, 2003: 1-5.[63] 王若云. 基于有限元分析技术的轮胎胶料动态力学特性研究[D]. 北京: 北京化工大学, 2016.