[1] 范丽雄. 橡胶的老化现象及其老化机理[J]. 新材料与新技术, 2018, 8(44): 54-55.[2] MacIsaac J J D, Feve S. NHTSA tire aging test deve-lopment project: Phoenix, arizona tire study[C]//The 20th proceedings of the international conference on the enhanced safety of vehicles. Lyon:National Highway Traffic Safety Administration,2007:496-502.[3] Baldwin J M, Bauer D R, Hurley P D. Field aging of tires [J]. Rubber Chemistry & Technology,2005,78(5):754-766.[4] 苏博,张浩成. 国内外轮胎整胎老化测试研究[J]. 橡塑技术与装备,2017,43(5):6.[5] 贺年茹,李红伟,孙炳光,等. 美国公路交通安全管理局轮胎老化研究报告(一)[J]. 中国橡胶,2015,31(11):8-12.[6] 贺年茹,李红伟,孙炳光,等. 美国公路交通安全管理局轮胎老化研究报告(二)[J]. 中国橡胶,2015,31(12):20-21.[7] Bauer D R, Baldwin J M, Ellwood K R. Rubber aging in tires(Part II): Accelerated oven aging tests[J]. Polymer Degradation and Stability,2007,92(1):110-117.[8] Deng Huang, La Count B J, Castro J M, et al. Deve-lopment of a service-simulating, accelerated aging test method for exterior tire rubber compounds (I): Cyclic aging [J]. Polymer Degradation and Stability,2001,71: 353-362.[9] Baldwin J M, Bauer D R, Ellwood K R. Accelerated aging of tires [J]. Rubber Chemistry and Technology, 2005,78(5):767-776.[10] La Count B J, Castro J M, Frederick I H. Development of a service-simulating, accelerated aging test method for exterior tire rubber compounds (II): Design and development of an accelerated out door aging simulator [J]. Polymer Degradation and Stability,2002,75(2):213-227.[11] 路金英,梁秋珍. 胎侧产生龟裂的原因分析及解决措施[J]. 橡胶工业,1993,40(10):29-31.[12] 孙波. 全钢载重子午线轮胎胎侧胶硫化体系的研究[J]. 轮胎工业,2020,40(10):600-603.[13] Waddell W H. 沉淀法白炭黑对黑胎侧胶料性能的改进[J]. 轮胎工业,1994,14(5): 0-14.[14] 蒲启君. 骨架材料与橡胶的粘合技术及其新进展[J]. 橡胶工业,2005,50(3):175-179. [15] 任晓静,李国瑞,梁千顷,等. 全钢载重子午线轮胎花纹沟底裂口的原因分析及解决措施[J]. 轮胎工业,2021,41(5): 323-326.[16] 王昊,危银涛,王静. 橡胶材料疲劳寿命影响因素及研究方法综述[J]. 橡胶工业,2020,67(10):723-735. [17] 刘云鹏,周涛,杨晓光. 有限元分析在轮胎结构设计中的应用[J]. 轮胎工业,2019,39(5): 263-267.[18] 梁晨,王国林,伍建军,等. 载重子午线轮胎接地几何特征研究[J]. 拖拉机与农用运输车,2010,37(1):55-56.[19] Gent A N, Razzaghi-Kashani M, Hamed G R. Why do cracks turn sideways?[J]. Rubber Chemistry & Technology,2003,76(1):122-131. [20] Baldwin J M, Bauer D R. Rubber oxidation and tire aging: A review [J]. Rubber Chemistry & Technology, 2008,81(2):338-358.[21] Baldwin J M, Bauer D R, Ellwood K R. Accelerated aging of tires [J]. Rubber Chemistry & Technology, 2005,78(2):336-353.[22] 邢程,余本祎,蔡莹莹. 轮胎老化耐久性能的研究[J]. 橡胶科技,2019,17(3):146-150.[23] 张又文,马良清,李红伟,等. 老化对轮胎及轮胎材料性能的影响[J]. 橡胶工业,2018,65:548-551.[24] 贺玉函,张雨昕,张震,等. 轮胎橡胶的热氧老化降解研究进展[J]. 合成材料老化与应用,2020,49(6): 126-134.[25] Baldwin J M, Bauer D R, Ellwood K R. Rubber aging in tires(Part 1): Field results [J]. Polymer Degradation and Stability, 2007,92:103-109.[26] 金林赫. 天然橡胶分子链支链及端基的分析[D]. 海口:海南大学,2017.[27] Bolland J L. Kinetic studies in the chemistry of rubber and related materials (I): The thermal oxidation of ethyl linoleate [J]. Transactions of the Faraday Society,1946,186(1005): 218 -236.[28] Zhao Jiaohong, Yang Rui, Iervolino R, et al. Changes of chemical structure and mechanical property levels during thermo-oxidative aging of NBR [J]. Rubber Chemistry & Technology,2013,86(4):591-603.[29] 齐藤孝臣,张琪. 各种橡胶的老化机理[J]. 橡胶参考资料,1996,26(6):9-20[30] 卜少华. 异戊橡胶的老化与防老化研究[D]. 北京:北京化工大学,2012.[31] 杨小田,张博,康建铭,等. 橡胶老化及其防护技术的研究概况[J]. 化工管理,2020(7):100-101.[32] Zhao Jiaohong, Yang Rui, Iervolino R, et al. The effect of thermo-oxidation on the continuous stress relaxation behavior of nitrile rubber [J]. Polymer Degradation and Stability,2015,115(5):32-37.[33] 谢艳玲,宋攀,徐彬彬,等. 不饱和橡胶的热氧老化研究进展[J]. 合成橡胶工业,2019,42(1):71-78.[34] 周益扬. 高低温循环及湿热对硅橡胶材料性能影响研究[D]. 北京:华北电力大学,2015.[35] 刘璇,杨睿. 橡胶密封材料老化研究进展[J]. 机械工程材料,2020,44(9):1-11.[36] 李彦. 热氧老化对炭黑填充橡胶拉伸力学性能的影响[D]. 湘潭:湘潭大学,2015.[37] 郑静,向科炜. 黄光速红外光谱研究丁基橡胶老化机理及寿命预测[J]. 宇航材料工艺,2013,43(1):89-92.[38] 周省委. 橡胶磨耗及表面形貌的研究[J]. 云南化工,2019,46(9):71-74.[39] 梁梨花,钟建永,丁玲,等. 顺丁橡胶的热氧老化及其机理[J]. 高分子材料科学与工程,2019,35(2):107-120.[40] Choi S S. Characteristics of the pyrolysis patterns of styrene-butadiene rubbers with differing microstructures [J]. Journal of Analytical and Applied Pyrolysis,2002,62(2):319-330.[41] Jitkarnka S, Chusaksri B, Supaphol P, et al. Influences of thermal aging on properties and pyrolysis products of tire tread compound [J]. Journal of Analytical and Applied Pyrolysis,2007,80(1):269-276.[42] 李利,王瑞,党栋,等. 轮胎骨架材料带束层的有限元分析[J]. 弹性体,2014,24(4):19-23.[43] 郑爱隔,马明强,李琦,等. 疲劳温度对橡胶与钢丝帘线动态粘合性能的影响[J]. 弹性体,2014,24(1):15-18.[44] 张广泰,陆东亮,魏飞来,等. 热氧老化作用下废旧叠层轮胎隔震垫的力学性能[J]. 华南理工大学学报(自然科学版),2019,47(8):16-22.[45] 张广泰,曹银龙,陆东亮,等. 热氧老化下废旧轮胎隔震垫隔震性能及压应力相关性研究[J]. 材料导报,2020,34(24): 24170-24177.[46] 陈经盛. 橡胶湿热老化试验的研究[J]. 老化与应用,1994(1):1-7.[47] Real L P, Gardette. Artificial simulated and natural weathering of poly (vinyl chloride) for outdoor applications: The influence of water in the changes of properties[J]. Polymer Degradation and Stability,2005,88:357-362.[48] Hardcastle H K, Meeks W L. Considerations for cha-racterizing moisture effects in coatings weathering stu-dies [J]. J Coat Technol Res,2008,5(2):181-192.[49] 张晓军,常新龙,张世英,等. 氟橡胶密封材料的湿热老化机制[J]. 润滑与密封,2013,38(5):38-41.[50] 张心宇,刘小青. 填料对硫化天然胶湿热老化性能的影响研究[J]. 绿色科技,2017,18:198-199.[51] Nguyen T, Martin J, Byrd E. Relating laboratory and out-door exposure of coatings(IV): Mode and mechanism for hydrolytic degradation of acrylic-melamine coatings exposed to water vapor in the absence of UV light [J]. Journal of Coatings Technology,2003,75(941):37-50.[52] 蒋莎莎. 硅橡胶加速老化及失效机理研究[D]. 哈尔滨:哈尔滨工业大学,2013.[53] Zhang Zhen, Zhang Yuxin, Li Jiayi, et al. Accelerated liquefaction of vulcanized natural rubber by thermo-oxidative degradation[J]. Polymer Bulletin,2022,79(3):1767-1786.[54] 吴磊,朱诗顺. 基于特征峰拟合法的轮胎老化定量研究[J]. 橡胶工业,2017,64(8):498-502.[55] 田瑶君,秦军,熊玉竹,等. PE 100材料的湿热老化性能及其寿命预测[J]. 塑料,2015,44(6): 9-11.[56] Larché J F, Bussière P O, Gardette J L. Characterisation of accelerated ageing devices for prediction of the service life of acrylic-melamine/urethane thermosets[J]. Polymer Degradation and Stability,2011,96(8): 1530-1536.[57] Colombini D, Martinez-Vega J J, Merle G. Dynamic mechanical investigations of the effects of water sorption and physical ageing on an epoxy resin system[J]. Polymer,2002,43(16): 4479-4485.[58] 沈尔明,李晓欣,王志宏,等. 长期储存后橡胶材料湿热老化分析[J]. 材料工程,2013(7):87-91.[59] Ozawaa K, Kakubob T. High-resolution photoelectron spectroscopy study of degradation of rubber-to-brass adhesion by thermal aging [J]. Applied Surface Science,2013,268(3):117-123.[60] 李利,肖培光,刘潇冬. 热老化和湿气老化对橡胶/钢丝帘线粘合性能的影响[J]. 特种橡胶制品,2016,37(5): 22-26.[61] 王亮,陈双俊,张军,等. 湿热老化对锰锌铁氧体/硅橡胶复合材料性能的影响[J]. 橡胶工业,2010,57(5): 275-281.[62] Vinod V S, Siby V. Degradation behaviour of natural rubber-aluminium powder composites: Effect of heat, ozone and high energy radiation[J]. Polymer Degradation and Stability,2002,75(3):405-412.[63] 王作龄. 防老剂应用技术[J]. 世界橡胶工业,2001,28(1): 55-59.[64] 吴磊,朱诗顺. 基于特征峰拟合法的轮胎老化定量研究[J]. 橡胶工业,2017,64(8):498-502.[65] 王思静,熊金平,左禹. 橡胶老化机理与研究方法进展[J]. 合成材料老化与应用,2009,38(2):23-33.[66] 李玲丽,郑刚. 天然橡胶耐臭氧性能研究[J]. 中国橡胶应用技术,2019,35(6): 46-49.[67] Middleton J, Burks B, Wells T, et al. The effect of ozone on polymer degradation in polymer core Composite conductors[J]. Polymer Degradation and Stability,2013,98(1): 436-445.[68] 王兵兵,黄桂春,陈永平,等. 不同生产工艺对天然橡胶臭氧老化性能与结构的影响[J]. 热带作物学报,2015,36(7):1342-1347.[69] Taksapattanakul K, Tulyapitak T, Phinyocheep P, et al. The effect of percent hydrogenation and vulcanization system on ozone stability of hydrogenated natural rubber vulcanizates using Raman spectroscopy [J]. Polymer Degradation and Stability,2017,141:58-68. [70] 那洪东. 预防弹性体制品老化和损坏的措施[J]. 世界橡胶工业,2009,36(2):41-48.[71] 高天奇,王兆波. 轿车轮胎耐臭氧老化性能研究[J]. 青岛科技大学学报(自然科学版),2018,39(S 1): 88-91.[72] 孙艳妮,何宁,孙钦军,等. 轮胎动态臭氧老化性能的研究[J]. 青岛科技大学学报(自然科学版),2019, 40(4):92-97.[73] 姬燕飞,赵伟松. 橡胶的老化与防护[J]. 橡塑资源利用,2016(4):25-29.[74] 符尧. 橡胶的疲劳老化与防护[J]. 特种橡胶制品,2019,40(4): 63-68.[75] 黄鹄,崔洪明,何峰. 橡胶防护蜡的生产优化及性能评价[J]. 润滑油,2020,35(2):54-57.[76] 张晓芳,王玲玲,邓涛. 不同温度下橡胶防护蜡抗臭氧老化性能的研究[J]. 特种橡胶制品,2015,36(6): 41-45.[77] 李永清,晏欣,郑淑贞. 硫化橡胶防老化涂层的研制[J]. 合成材料老化与应用,2004(4):31-35.[78] 余本祎,邢程,蔡莹莹. 提高轻型载重子午线轮胎老化耐久性能的结构优化设计[J]. 轮胎工业,2020,40(10): 588-592.[79] 张晓旭. 丁腈橡胶老化与防护的探究[J]. 辽宁化工,2018,47(10):1013-1016.[80] Ahmed F S, Shafy M, Abd E A A, et al. The effect of γ-irradiation on acrylonitrile-butadiene rubber NBR seal materials with different antioxidants[J]. Materials & Design,2012,36:823-828.[81] 赵建勇,岳红,陈兵勇,等. 氢化丁腈橡胶耐热老化性能的研究[J]. 粘接,2013,34(10):48-51.[82] 舒本勤. 高耐压高硬度橡胶材料的研究[D]. 武汉:武汉理工大学,2009.[83] 王才朋,马德龙,杨振林,等. 防护体系对轮胎胎侧胶耐老化性能的影响[J]. 橡胶科技,2019,17(2):92-95.[84] 丛明辉,吕丹丹,林科,等. 硫化温度及硫化程度对全钢载重子午线轮胎胎面胶性能的影响[J]. 轮胎工业,2020,40(10): 618-621.[85] 杨艳平,姬新生. 硫化体系对全钢载重子午线轮胎钢丝粘合胶性能的影响[J]. 轮胎工业,2008(5): 282-285.[86] Rattanasom N, Poonsuk A, Makmoon T. Effect of cu-ring system on the mechanical properties and heat aging resistance of natural rubber/tire tread reclaimed rubber blends [J]. Polymer Testing,2005,24(6):728-732.[87] 李鹏,于志勇,吕丹丹,等. 多功能橡胶硫化活性剂ZH-73对全钢载重子午线轮胎胎面胶性能的影响[J]. 橡胶科技,2020,18(3):146-149.[88] 任夫云,张世鑫,孙宝余,等. 不同结构顺丁橡胶在载重子午线轮胎胎侧胶中的应用[J]. 轮胎工业,2020,40(11): 663-665.[89] 蒋洪罡,栗付平,王力,等. 天然橡胶与合成聚异戊二烯的并用研究[J]. 特种橡胶制品,2008(5):20-23.[90] 徐晓鹏,张炫辉,朱大为. 环氧化天然橡胶在全钢子午线轮胎带束层中的应用研究[J]. 轮胎工业, 2018,38(4):217-220.[91] 姚利丽,刘湘慧,倪自飞,等. 氯化天然橡胶对子午线轮胎胎圈胶性能的影响[J]. 轮胎工业,2017,37(5):289-292.[92] 曾国镇. 胎圈钢丝表面涂层液的研究[J]. 金属制品,2009,35(3):14-19.[93] 李利,罗高翔,霍石磊,等. 促进剂种类对橡胶-钢丝粘合和胶料性能的影响[J]. 橡胶工业,2021,68(2):104-108.[94] 刘磊,杨艳平,樊斌斌,等. 粘合抗氧剂BW-60在全钢载重子午线轮胎胎体中的应用[J]. 轮胎工业, 2016, 36(11): 676-678.[95] 宋维浩,吕德军,王晶晶,等. 炭黑对天然橡胶钢丝复合体性能的影响[J]. 弹性体,2020,30(4):33-36.