|本期目录/Table of Contents|

[1]王林艳,梁玉蓉?鄢,亢晨晨,等.氧化石墨烯/天然橡胶复合材料的制备与性能[J].合成橡胶工业,2022,5:375-379.
 WANG Lin-yan,LIANG Yu-rong,KANG Chen-chen,et al.Preparation and properties of graphene oxide/natural rubber composites[J].China synthetic rubber industy,2022,5:375-379.
点击复制

氧化石墨烯/天然橡胶复合材料的制备与性能(PDF)

《合成橡胶工业》[ISSN:1000-1255/CN:62-1036/TQ]

期数:
2022年5期
页码:
375-379
栏目:
出版日期:
2022-09-15

文章信息/Info

Title:
Preparation and properties of graphene oxide/natural rubber composites
文章编号:
1000-1255(2022)05-0375-05
作者:
王林艳12梁玉蓉12?鄢亢晨晨1周平德1康泽平1
1. 太原工业学院 材料工程系, 太原 030008; 2. 中北大学 材料科学与工程学院, 太原 030051
Author(s):
WANG Lin-yan12 LIANG Yu-rong12 KANG Chen-chen1 ZHOU Ping-de1 KANG Ze-ping1
1.Department of Materials Engineering, Taiyuan Institute of Technology , Taiyuan 030008, China; 2.School of Materials Science and Engineering, North University of China ,Taiyuan 030051,China
关键词:
己内酰胺氧化石墨烯天然橡胶物理机械性能界面相互作用气体渗透系数
Keywords:
caprolactam graphene oxide natural rubber physical and mechanical property interfacial interaction gas permeability coefficient
分类号:
TQ 332
DOI:
DOI:10.19908/j.cnki.ISSN1000-1255.2022.05.0375
文献标识码:
B
摘要:
采用己内酰胺(CPL)改性氧化石墨烯(GO)(CPL-GO),与天然橡胶(NR)复合后通过熔融共混法制备了CPL-GO/NR复合材料。考察了CPL-GO用量对CPL-GO/NR复合材料物理机械性能、界面相互作用和气体阻隔性能的影响。结果表明,CPL改性GO后,X射线衍射层间距增加,片层堆砌更为松散,CPL-GO与水接触角增至91.2°。当CPL-GO的质量分数为2.0%时,CPL-GO/NR复合材料的拉伸强度为26.1 MPa,较纯NR提高了50.9%。随着CPL-GO用量的增加,复合材料的储能模量增加,损耗因子的峰值减小,表明GO经CPL表面改性后与NR复合,增强了两相界面间的相互作用,从而提高了复合材料抵抗变形的能力。在40 ℃下,当CPL-GO的质量分数为3.0%时,CPL-GO/NR复合材料的气体渗透系数较纯NR下降了57.1%。
Abstract:
Graphene oxide(GO) was modified with caprolactam (CPL) to obtain CPL-GO, then CPL-GO/natural rubber (NR) composites were prepared by melt blending method after combining with NR. The effect of amount of CPL-GO on the physical and mechanical properties, interfacial interaction and gas barrier properties of CPL-GO/NR composites were investigated. The results showed that the spacing of X-ray diffraction layers of CPL-GO increased, the GO lamellar stacking became looser, the water contact angle of CPL-GO increased to 91.2°, which contributed to the good dispersion of GO in the rubber matrix. When the mass fraction of CPL-GO was 2.0%, the tensile strength of CPL-GO/NR composite was 26.1 MPa, which was 50.9% higher than that of pure NR. With the increasing amount of CPL-GO, the storage modulus of the composite increased, and the peak value of the loss factor decreased. It indicated that the composite of GO after surface modification of CPL compounded with NR enhanced the interaction between the two-phase interfaces, which improved the ability of the composite to resist deformation. At 40 ℃, when the mass fraction of CPL-GO was 3.0%, the gas permeability coefficient of CPL-GO/NR composite decreased by 57.1% compared with that of pure NR.

参考文献/References

[1] Meyer J C, Geim A K, Katsnelson M I, et al. The structure of suspended graphene sheets[J]. Nature,2007,446(7131):60-63.[2] Huang Shasha, Hou Jiarui, Yin Jian, et al. Anti-blooming effect of graphene oxide on natural rubber latex composite films[J]. Composites Science and Technollogy, 2019,174(12):142-148.[3] Zhong Bangchao, Luo Yongyue, Chen Wanjun, et al. Immobilization of rubber additive on graphene for high-performance rubber composites[J]. Journal of Colloid and Interface Sciencs,2019,550(8):190-198. [4] Yan Han, Li Hao, Li Wen, et al. Probing the damping property of three-dimensional graphene aerogels in carboxylated nitrile butadiene rubber/polyurethane blend[J]. Polymer Engineering and Science,2020,60(1): 61-70.[5] Asish M, Parthajit P, Chapal K D. Effect of expanded graphite and modified graphite flakes on the physical and thermo-mechanical properties of styrene butadiene rubber/polybutadiene rubber (SBR/BR) blends[J]. Materials &Design ,2014,55(3): 664-673.[6] Hao Shuai, Wang Jian, Lavorgna M, et al. Constructing 3 D graphene network in rubber nanocomposite via liquid-phase re-dispersion and self-assembly[J]. Applied Materials Interfaces,2020,12(8): 9682-9692.[7] Yang Siqiang, Wu Hong, Li Chunhai, et al. Constructing oriented two-dimensional large-sized modified graphene oxide barrier walls in brominated butyl rubber to achieve excellent gas barrier properties[J]. Applied Materials Interfaces,2020,12(3): 3976-3983.[8] Wu Jinrong , Huang Guangsu, Li Hui, et al. Enhanced mechanical and gas barrier properties of rubber nanocomposites with surface functionalized graphene oxide at low content[J]. Polymer,2013,54(7):1930-1937.[9] Zhan Yanhu, Lavorgna M, Buonocore G, et al. Enhancing electrical conductivity of rubber composites by constructing interconnected network of self-assembled graphene with latex mixing[J]. Journal of Materials Chemistry, 2012,22(21):10464-10468.[10] Zheng Long, Jerrams S, Xu Zongchao, et al. Enhanced gas barrier properties of graphene oxide/rubber composites with strong interfaces constructed by graphene oxide and sulfur[J]. Chemical Engineering Journal, 2020,383:123100.[11] Lin Yong, Zeng Zhikai, Zhu Jiarong, et al. Graphene nanosheets decorated with ZnO nanoparticles: Facile synthesis and promi-sing application for enhancing mechanical and gas barrier properties of rubber nanocomposites[J]. RSC Advances, 2015,5(71): 57771-57780.[12] Yaragalla S, Meera A P, Kalarikkal N, et al. Chemistry associated with natural rubber-graphene nanocomposites and its effect on physical and structural properties[J]. Ind Crop Prod, 2015,74:792-802.[13 ] Yan N, Buonocore G, Lavorgna M, et al. The role of reduced graphene oxide on chemical, mechanical and barrier properties of nature rubber composites[J]. Compos Sci Technol, 2014,102:74-81.[14] Yang Zhijun, Liu Heng, Wu Siwu, et al. A Green method for preparing conductive elastomer composites with inter-connected graphene network via pickering emulsion templating[J]. Che-mical Engineering Journal,2018,342:112-119. [15] Songsaeng S, Thamyongkit P, Poompradub S. Natural rubber/reduced-graphene oxide composite materials: Morphological and oil adsorption properties for treatment of oil spills[J]. Journal of Advanced Research,2019,20:79-89.[16] Cai Fei, You Guohua, Zhao Xiuying, et al. The relationship between specific structure and gas permeability of bromobutyl rubber: A combination of experiments and molecular simulations[J]. Macromolecular Theory and Simulations,2019, 28(6):1900025.[17] Liao K H, Kobayashi S, Kim H, et al. Influence of functiona-lized graphene sheets on modulus and glass transition of PMMA[J]. Macromolecule,2014,47(21):7674-7676.[18] Scherillo G, Lavorgna M, Buonocore G, et al. Tailoring assembly of reduced graphene oxide nanosheets to control gas barrier properties of natural nanocomposites[J]. Applied materials & Interfaces,2014,6(4):2230-2234.[19] Bhattacharyya S, Sinturel C, Bahloul O, et al. Improving reinforcement of natural rubber by networking of activated carbon nanotubes[J]. Carbon,2008,46(7):1037-1045.

备注/Memo

备注/Memo:
山西省高等学校科技创新项目(2020 L 0653)。
更新日期/Last Update: 2022-09-15