|本期目录/Table of Contents|

[1]禹新良,柳 俊.支持向量机在丁苯橡胶合成及加工中的应用[J].合成橡胶工业,2022,5:365-369.
 YU Xin-Liang,LIU Jun.Application of support vector machine in synthesis and processing of butadiene-styrene rubber[J].China synthetic rubber industy,2022,5:365-369.
点击复制

支持向量机在丁苯橡胶合成及加工中的应用(PDF)

《合成橡胶工业》[ISSN:1000-1255/CN:62-1036/TQ]

期数:
2022年5期
页码:
365-369
栏目:
出版日期:
2022-09-15

文章信息/Info

Title:
Application of support vector machine in synthesis and processing of butadiene-styrene rubber
文章编号:
1000-1255(2022)05-0365-05
作者:
禹新良柳 俊
湖南工程学院 材料与化工学院, 湖南 湘潭 411104
Author(s):
YU Xin-Liang LIU Jun
College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China
关键词:
丁苯橡胶支持向量机乳液聚合硫化工艺炭黑用量
Keywords:
butadiene-styrene rubber support vector machine emulsion polymerization vulcanization process carbon black amount
分类号:
TQ 333.1
DOI:
DOI:10.19908/j.cnki.ISSN1000-1255.2022.05.0365
文献标识码:
A
摘要:
采用支持向量机(SVM)与粒子群寻优算法,建立了丁苯橡胶SBR 1712聚合过程和硫化工艺的模拟模型。结果表明,以SBR 1712产品性能胶乳固含量、门尼黏度和分子量分布系数作为输入,乳液间歇聚合所采用的引发剂、活化剂、链转移剂用量分别作为输出的预测模型,训练集及测试集的决定系数均大于0.8,模型预测值与实验值相吻合。以SBR 1712硫化加工中产品的邵尔A硬度、焦烧时间、最小弹性转矩、最小黏性转矩作为输入变量,建立了以填料炭黑用量作为输出的SVM模型,模型拟合及预测性能效果较好。
Abstract:
Prediction models were established for the polymerization and vulcanization process of butadiene-styrene rubber SBR 1712, by applying support vector machine (SVM) and particle swarm optimization algorithms. The results showed that the models with the solid content, Mooney viscosity and molecular weight polydispersity of SBR 1712 as inputs and the amount of initiator, activator and chain transfer agent used in batch emulsion polymerization as outputs produced determination coefficients greater than 0.8 for the training and test sets, and the predicted values from the models were consistent with the experimental values. Another SVM model was developed by using loading amount of furnace carbon black as output parameter and the properties in vulcanization process as input variables, including the shore A hardness, scorch time, minimum elastic torque and minimum viscous torque of SBR 1712. This model had excellent performance in fitting and prediction.

参考文献/References

[1] Azadmanesh H, Hashemi S A H, Ghasemi S H. The effect of styrene-butadiene rubber and ethylene vinyl acetate polymers on the mechanical properties of engineered cementitious composites[J]. Composites Communications,2021,24:100656.[2] Azadgoleh M A, Modarres A, Ayar P. Effect of polymer modified bitumen emulsion production method on the durability of recycled asphalt mixture in the presence of deicing agents[J]. Construction and Building Materials,2021,307:124958.[3] Fernandes F A N, Lona L M F, Penlidis A. Inverse modeling applications in emulsion polymerization of vinyl acetate [J]. Chemical Engineering Science,2004,59(15):3159-3167.[4] Fernandes F A N, Lona L M F. Application of neural networks for the definition of the operating conditions of fluidized bed polymerization reactors[J]. Polymer Reaction Engineering,2002,10(3):181-192.[5] Padmavathi G, Mandan M G, Mitra S P, et al. Neural modeling of Mooney viscosity of polybutadiene rubber[J]. Computers and Chemical Engineering,2005,29(7):1677-1685.[6] Delfa G M, Olivieri A, Boschetti C E. Multiple response optimization of styrene-butadiene rubber emulsion polymerization[J]. Computers and Chemical Engineering,2009,33(4):850-856.[7] Demirhan E, Kandemirli F, Kandemirli M, et al. Investigation of the physical and rheological properties of SBR-1712 rubber compounds by neural network approaches[J]. Materials and Design,2007,28(5):1737-1741.[8] Yu Xinliang, Xu Lisha, Zhu Yali, et al. Correlation between 13C NMR chemical shifts and complete sets of descriptors of natural coumarin derivatives [J]. Chemometrics and Intelligent Laboratory Systems,2019,184:167-174.[9] Yu Xinliang, Wang Hanlu. Support vector machine classification model for color fastness to ironing of vat dyes[J]. Textile Research Journal,2021,91(15/16):1889-1899. [10] Yu Xinliang. Quantitative structure-toxicity relationships of organic chemicals against Pseudokirchneriella subcapitata [J]. Aquatic Toxicology,2020,224:105496. [11] Moodi M, Ghazvini M, Moodi H. A hybrid intelligent approach to detect Android Botnet using smart self-adaptive learning-based PSO-SVM [J]. Knowledge-Based Systems,2021,222:106988.[12] Dixit A, Mani A, Bansal R. CoV 2-Detect-Net: Design of COVID-19 prediction model based on hybrid DE-PSO with SVM using chest X-ray images[J]. Information Sciences,2021,571:676-692.

备注/Memo

备注/Memo:
湖南省自然科学基金资助项目(12 JJ 6011)。
更新日期/Last Update: 2022-09-15