[1] 梁滔, 魏绪玲, 龚光碧, 等. 液体橡胶的研究进展(Ⅱ): 端基聚丁二烯液体橡胶的合成[J]. 合成橡胶工业, 2011, 34(3): 234-238.[2] 冯雨晨, 介素云, 李伯耿. 烯烃易位聚合制备遥爪聚合物及嵌段共聚物[J]. 化学进展, 2015, 27(8): 1074-1086.[3] 魏绪玲, 魏玉丽, 龚光碧, 等. 可控自由基聚合技术在合成高分子材料中的应用[J]. 合成橡胶工业, 2016, 39(4): 338-344.[4] 戴璐. 功能化聚丁二烯液体橡胶及其嵌段共聚物的合成[D]. 杭州: 浙江大学, 2020.[5] 慕春雨. 端基改性杂臂星形溶聚丁苯橡胶的合成研究[D]. 北京: 北京化工大学, 2012.[6] 陈继明. 阴离子合成高1,4-结构含量端羟基聚丁二烯的研究[D]. 济南: 山东大学, 2010.[7] 张成龙. 异丁烯控制阳离子聚合及制备芳胺端基官能化聚异丁烯的研究[D]. 北京: 北京化工大学, 2008.[8] 刘姣, 朋泽蕙, 赵菲. 催化剂对烯烃复分解反应改性溶聚丁苯橡胶的影响[J]. 青岛科技大学学报(自然科学版), 2019, 40(2): 30-33.[9] 刘姣, 赵菲. 烯烃复分解反应改性溶聚丁苯橡胶的研究[J]. 高校化学工程学报, 2020, 34(6): 1424-1429. [10] 罗治斌, 戴立信. 2005诺贝尔化学奖——烯烃复分解反应的故事(从发现到发展)[J]. 自然杂志, 2005(6): 326-329.[11] 姚雄生, Lei Yao, 金雯. 烯烃的复分解反应——一种高效、绿色的有机合成新方法[J]. 精细与专用化学品, 2009, 17(10): 24-27.[12] 王溯, 张友璐, 巴妍妍, 等. 立体选择性烯烃复分解反应的研究及应用[J]. 有机化学, 2020, 40(9): 2725-2741.[13] 邹婷婷, 蒋斌, 林韶晖, 等. 烯烃易位法降解顺丁橡胶及制备遥爪低聚物的研究[J]. 高分子学报, 2016(10): 1374-1382.[14] Bielawski C W, Grubbs R H. Increasing the initiation efficiency of ruthenium-based ring-opening metathesis initiators: Effect of excess phosphine[J]. Macromolecules, 2001, 34(26): 8838-8840.[15] Bielawski C W, Grubbs R H. Living ring-opening metathesis polymerization[J]. Progress in Polymer Science, 2006, 32(1): 1-29.[16] 李艳伟, 赵伟, 白雪峰. 烯烃复分解反应在有机合成中的应用[J]. 精细石油化工, 2007, 24(3): 79-82.[17] Chumpol T, Mitsuhiro A, Arsushi N, et al. A novel synthesis of substituted quinolines using ring-closing metathesis (RCM): Its application to the synthesis of key intermediates for anti-malarial agents[J]. Tetrahedron Letters, 2004, 60(13): 3017-3035.[18] 陈杏芬, 杨定乔. 关环复分解反应(RCM)的研究新进展[J]. 广州化工, 2005(3): 3-8.[19] Chatterjee A K, Sanders D P, Grubbs R H. Synthesis of symmetrical trisubstituted olefins by cross metathesis[J]. Organic Letters, 2002, 4(11): 1939-1942.[20] 郭盈岑, 肖文精. 烯烃的交叉复分解反应(CM)及其合成应用[J]. 有机化学, 2005, 25(11): 27-34.[21] Demchuk O M, Pietrusiewicz K M, Michrowska A, et al. Synthesis of substituted p-stereogenic vinylphosphine oxides by olefin cross-metathesis[J]. Organic Letters, 2003, 5(18): 3217-3220.[22] Connon S J, Blechert S. Recent developments in olefin cross-metathesis[J]. Angewandte Chemie, 2003, 42(17): 1900-1923.[23] Ryu Y, Shao H L, Ahumada G, et al. Redox-switchable olefin cross metathesis (CM) reactions and acyclic diene metathesis (ADMET) polymerizations[J]. Materials Chemistry Frontiers, 2019, 3(10): 2083-2089.[24] da Silva L C, Rojas G, Schulz M D, et al. Acyclic diene metathesis polymerization: History, methods and applications[J]. Progress in Polymer Science, 2017, 69: 79-107.[25] Miyashita T, Nomura K. Catalytic one-pot synthesis of end-functionalized poly(9,9′-di-n-octylfluorenevinylene)s by acyclic diene metathesis (admet) polymerization using ruthenium-carbene catalysts[J]. Macromolecules, 2016, 49(2): 518-526.[26] Scholl M, Ding S, Lee C W, et al. Synthesis and activity of a new generation of ruthenium-based olefin metathesis catalysts coordinated with 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene ligands[J]. Organic Letters, 1999, 1(6): 953-956.[27] Kingsbury J S, Harrity J P A, Bonitatebus P J, et al. A recyclable Ru-based metathesis catalyst[J]. Journal of the American Chemical Society, 1999, 121(4): 791-799.[28] Michrowaka A, Bujok R, Harutyunyan S, et al. Nitro-substituted Hoveyda-Grubbs ruthenium carbenes: Enhancement of catalyst activity through electronic activation[J]. Journal ofthe American Chemical Society, 2004, 126(30): 9318-9325.[29] Hoveyda A H, Gillingham D G, Dennis G, et al. Ru complexes bearing bidentate carbenes: From innocent curiosity to uniquely effective catalysts for olefin metathesis[J]. Organic & Biomolecular Chemistry, 2004, 2(1): 8-23.[30] 颜廷斌. 烯烃复分解钌催化剂新型NHC配体与螯合型卡宾配体合成研究[D]. 昆明: 昆明理工大学, 2018.[31] 李郭成, 高康莉, 邓兆静, 等. 第二代Grubbs催化剂配体的合成及优化[J]. 化工时刊, 2015, 29(3): 18-21.[32] 胡金金, 黄汉民, 左秀锦. Grubbs催化剂合成研究进展[J]. 分子催化, 2012, 26(6): 566-575.[33] 马敏, 于清江, 王家柱, 等. 烯烃复分解反应机理及其催化剂——2005年诺贝尔化学奖简介[J]. 化学世界, 2007(3): 190-192.[34] Xie Meiran, Wang Weizhen, Ding Liang, et al. Cleavable multiblock copolymer synthesized by ring-opening metathesis copolymerization of cyclooctene and macrocyclic olefin and its hydrolysis to give carboxyl-telechelic polymer[J]. Journal of Polymer Science (Part A): Polymer Chemistry, 2010, 48(2): 380-388.[35] Pitet L M, Hillmyer M A. Carboxy-telechelic polyolefins by ROMP using maleic acid as a chain transfer agent[J]. Macromolecules, 2011, 44(7): 2378-2381.[36] Dai Lu, Wang Xixi, Bu Zhiyang, et al. Facile access to carboxyl-terminated polybutadiene and polyethylene from cis-polybutadiene rubber[J]. Journal of Applied Polymer Science, 2018, 136(2): 46934.[37] 王茜茜, 戴璐, 介素云,等. 双烯烃橡胶复分解-加氢制备端羧基聚烯烃[J]. 高分子学报, 2020, 51(3): 277-286.[38] Bielawski C W, Scherman O A, Grubbs R H. Highly efficient syntheses of acetoxy- and hydroxy-terminated telechelic poly(butadiene)s using ruthenium catalysts containing N-heterocyclic ligands[J]. Polymer, 2001, 42(11): 4939-4945.[39] Thomas R M, Grubbs R H. Synthesis of telechelic polyisoprene via ring-opening metathesis polymerization in the presence of chain transfer agent[J]. Macromolecules, 2010, 43(8): 3705-3709.[40] Pitet L M, Chamberlain B M, Hauser A W, et al. Synthesis of linear, H-shaped, and arachnearm block copolymers by tandem ring-opening polymerizations[J]. Macromolecules, 2010, 43(19): 8018-8025.[41] 宋雪, 辛明辉, 贾伟东, 等. 烯烃复分解反应改性硅橡胶的研究[J]. 弹性体, 2017, 27(6): 25-27.[42] Zou Tingting, Jiang Bin, Lin Shaohui, et al. Metathetic degradation of styrene-butadiene rubber via Ru-alkylidene complex catalyzed reaction[J]. Polymer (Korea), 2016, 40(5): 663-670.[43] Smith R F, Boothroyd S C, Thompson R L, et al. A facile route for rubber breakdown via cross metathesis reactions[J]. Green Chemistry, 2016, 18(11): 3448-3455.[44] de Espinosa L M, Kempe K, Schubert U E, et al. Side-chain modification and “grafting onto” via olefin cross-metathesis[J]. Macromolecular Rapid Communications, 2012, 33(23): 2023-2028.[45] Martinez Z, Gutierrez S, Tlenkopatchev M A, et al. Metathesis transformations of natural products: Cross-metathesis of natural rubber and mandarin oil by Ru-alkylidene catalysts[J]. Molecules, 2012, 17(5): 6001-6010.[46] Morita T, Maughon B R, Bielawski C W, et al. A ring-opening metathesis polymerization (ROMP) approach to carboxyl- and amino-terminated telechelic poly(butadiene)s[J]. Macromolecules, 2000, 33(17): 6621-6623.[47] Ji S X, Hoye T R, Macosko C W. Controlled synthesis of high molecular weight telechelic polybutadienes by ring-opening metathesis polymerization[J]. Macromolecules, 2004, 37(15): 5485-5489.[48] Ying Weilun, Pan Weijing, Gan Qiao, et al. Preparation and property investigation of chain end functionalized cis-1,4 polybutadienes via de-polymerization and cross metathesis of cis-1,4 polybutadienes[J]. Polymer Chemistry, 2019, 10(25): 3525-3534.[49] Jiang Bin, Wei Tian, Zou Tingting, et al. A novel approval for degradation of polybutadiene and synthesis of diene-based telechelic oligomers via olefin cross metathesis[J]. Macromolecular Reaction Engineering, 2015, 9(5): 480-489.[50] Hu Guangwei, Lin Shaohui, Zhao Boxin, et al. Synthesis and characterization of natural rubber-based telechelic oligomers via olefin metathesis[J]. Journal of Applied Polymer Science, 2020, 138(8): e 49899.