|本期目录/Table of Contents|

[1]陶家粱,赵 晶,王世杰,等.纳米二氧化锆增强丁腈橡胶力学性能的分子动力学模拟[J].合成橡胶工业,2022,4:289-293.
 TAO Jia-liang,ZHAO Jing,WANG Shi-jie,et al.Molecular dynamics simulation of reinforcement of mechanical properties of nitrile rubber by adding nano-zirconia[J].China synthetic rubber industy,2022,4:289-293.
点击复制

纳米二氧化锆增强丁腈橡胶力学性能的分子动力学模拟(PDF)

《合成橡胶工业》[ISSN:1000-1255/CN:62-1036/TQ]

期数:
2022年4期
页码:
289-293
栏目:
出版日期:
2022-07-15

文章信息/Info

Title:
Molecular dynamics simulation of reinforcement of mechanical properties of nitrile rubber by adding nano-zirconia
文章编号:
1000-1255(2022)04-0289-05
作者:
陶家粱赵 晶王世杰崔剑征陈诗瑶
1.沈阳工业大学 机械工程学院,沈阳 10870;2.哈尔滨工业大学 航天科学与力学系,哈尔滨 150001; 3.锦西化工研究院有限公司,辽宁 葫芦岛 125000
Author(s):
TAO Jia-liang ZHAO Jing WANG Shi-jie CUI Jian-zheng CHEN Shi-yao
1. School of Mechanical and Engineering, Shenyang University of Technology, Shenyang 110870, China; 2. Department of Astronautics Science and Mechanics, Harbin Institute of Technology, Harbin 150001, China; 3. Jinxi Research Institute of Chemical Industry, Huludao 125000, China
关键词:
丁腈橡胶纳米二氧化锆力学性能分子动力学模拟
Keywords:
nitrile rubber nano-zirconia mechanical property molecular dynamics simulation
分类号:
TQ 333.7
DOI:
DOI:10.19908/j.cnki.ISSN1000-1255.2022.04.0289
文献标识码:
A
摘要:
采用分子动力学模拟的方法建立了纳米二氧化锆增强丁腈橡胶(NBR)复合材料的分子模型,对比分析了外部填充、原位填充以及原位填充且经过偶联化处理三种形态的二氧化锆对NBR力学性能的增强效果,从原子层面探讨了定子橡胶力学性能的内在增强机制。结果表明,相比于纯NBR,三种形态二氧化锆的引入均显著改善了NBR的力学性能。原位填充纳米二氧化锆的表面羟基与NBR形成氢键型偶极相互作用,表面活性偶联剂双-(3-三乙氧基硅烷丙基)四硫化物的加入进一步提供了与橡胶基质之间的化学桥接,从而大大提升了NBR基质的力学性能。与纯NBR体系相比,原位填充且经过偶联化处理的二氧化锆增强NBR的力学性能表现最佳,复合体系的杨氏模量、体积模量和剪切模量均提升得最多。通过界面结合能、非键合能、均方位移和扩散系数的计算,验证了纳米二氧化锆的添加改善了定子橡胶力学性能的结论。
Abstract:
The molecular model of nano-zirconia reinforced nitrile rubber (NBR) composite was established by molecular dynamics simulation. The reinforcement effects of three forms of nano-zirconia, namely, external filling, in-situ filling, and in-situ filling and coupling treatment on mechanical pro-perties of NBR were compared and analyzed, internal reinforcement mechanism of the mechanical properties of stator rubber was discussed from atomic level. The results showed that compared with pure NBR, the mechanical properties of NBR were significantly improved by introduction of three forms of nano-zirconia. The surface hydroxyl of in-situ filled nano-zirconia interacted with NBR to form hydrogen bond type dipole interaction. The addition of surfactant coupling agent bis-(3-triethoxysilane propyl) tetrasulfide further provided a chemical bridge with the rubber matrix, thus greatly improving the mechanical properties of NBR matrix. Compared with pure NBR system, the nano-zirconia filled in situ and treated by coupling had the best performance in enhancing the mechanical properties of NBR, and the young’s mo-dulus, volume modulus and shear modulus of the composite system were improved the most. The conclusion that the addition of nano-zirconia improved the mechanical properties of stator rubber was verified by calculating the interface binding energy, non-bond energy, mean square displacement and diffusion coefficients.

参考文献/References

[1] 王哲, 王世杰, 吕晓仁. 潜油螺杆泵定子橡胶摩擦磨损行为研究[J]. 机械设计与制造, 2014(2): 163-166.[2] Kuang Fuming, Zhou Xincong, Huang Jian, et al. Tribological properties of nitrile rubber/UHMWPE/nano-MoS2 water-lubricated bearing material under low speed and heavy duty[J]. Journal of Tribology, 2018, 140(6): 1086.[3] Ambilkar S C, Bansod N D, Kapgate B P, et al. In situ zirco-nia: A superior reinforcing filler for high-performance nitrile rubber composites[J]. ACS Omega, 2020, 5(14): 7751-7761.[4] 侯超, 侯永改, 李文凤, 等. ZrO2表面改性及凝胶注模研究[J]. 中国陶瓷, 2021, 57(1): 19-23.[5] 唐黎明, 任师兵, 郝敏, 等. 含纳米氧化锌丁腈橡胶摩擦学行为的分子动力学模拟[J]. 润滑与密封, 2019, 44(12): 42-45.[6] Cui Jianzheng, Zhao Jing, Wang Shijie, et al. A comparative study on enhancement of mechanical and tribological properties of nitrile rubber composites reinforced by different functiona-lized graphene sheets: Molecular dynamics simulations[J]. Polymer Composites, 2020, 42(1): 205-219.[7] Cui Jianzheng, Zhao Jing, Wang Shijie, et al. Effects of carbon nanotubes functionalization on mechanical and tribological properties of nitrile rubber nanocomposites: Molecular dynamics simulations[J]. Computational Materials Science, 2021, 196(2): 516-522.[8] Liu Xueshen, Zhou Xincong, Kuang Fuming, et al. Mechanical and tribological properties of nitrile rubber reinforced by nano-SiO2: Molecular dynamics simulation[J]. Tribology Letters, 2021, 69(2): 54-69.[9] Kulkarni P, Jose B, Sambhudevan S, et al. Influence of SiC and TiO2 on the cure characteristics and mechanical properties of natural rubber composites[J]. Materials Today: Proceedings, 2020, 46: 4451-4453.[10] Feven M M, Mohan R K, Arshia F, et al. Zirconia/graphene nanocomposites effect on the enhancement of thermo-mechanical stability of polymer hydrogels[J]. Materials Today Communications, 2019, 21(C): 100701.[11] 贾其苏,许世鹏,赵杰鸽. 纳米二氧化锆添加剂对润滑脂摩擦学性能影响的研究[J]. 材料保护, 2021, 54(2): 13-20.[12] Alisin V V, Diethelm B A, Kulebyakin A V, et al. Impro-ving the mechanical properties of zirconia in instrument bea-rings[J]. MATEC Web of Conferences, 2020, 329: 02023.[13] Ha Seung-Ryong, Choi Yu-Sung. Effect of hydrothermal aging on dental multilayered zirconia for monolithic restorations: An in vitro study[J]. Ceramics International, 2021, 47(12): 17057-17068.[14] Ma Xiaoqian, Peng Cong, Zhou Dayu, et al. Synthesis and mechanical properties of the epoxy resin composites filled with sol-gel derived ZrO2 nanoparticles[J]. Journal of Sol-Gel Science and Technology, 2018, 88(2): 442-453.[15] Wan A K, Mohammad M R, Mohammad H A. Sol-gel synthesis and morphology, thermal and optical properties of epoxidized natural rubber/zirconia hybrid films[J]. Journal of Non-Crystalline Solids, 2013, 378: 152-157.[16] Yang Bin, Wang Shijie, Li Yunlong, et al. Molecular dynamics simulations of mechanical properties of swollen nitrile rubber composites by incorporating carbon nanotubes[J]. Polymer Composites, 2020, 41(8): 3160-3169.[17] 杨金蒙, 杨斌, 李云龙, 等. 用分子动力学模拟研究丁腈橡胶/顺丁橡胶共混胶的相容性及耐低温性能[J]. 合成橡胶工业, 2020, 43(4): 291-295.[18] 王刚. NBR/PVC共混胶与动态硫化热塑性弹性体的制备与性能研究[D]. 青岛: 青岛科技大学, 2012.[19] Li Yunlong, Wang Shijie, Behrouz A, et al. A study on tribology of nitrile-butadiene rubber composites by incorporation of carbon nanotubes: Molecular dynamics simulations[J]. Carbon, 2016, 100: 145-150.[20] Kube C M, Arguelles A P. Bounds and self-consistent estimates of the elastic constants of polycrystals[J]. Computers & Geosciences, 2016, 95(10): 118-122.[21] Man Chising, Huang Mojia. A simple explicit formula for the Voigt-Reuss-Hill average of elastic polycrystals with arbitrary crystal and texture symmetries[J]. Journal of Elasticity, 2011, 105(1/2): 29-48.[22] Nihmath A, Ramesan M T. Synthesis, characterization, processability, mechanical properties, flame retardant, and oil resistance of chlorinated acrylonitrile butadiene rubber[J]. Polymers for Advanced Technologies, 2018, 29(8): 2165-2173.

备注/Memo

备注/Memo:
中央引导地方科技发展专项资金资助项目(2020 JH 6/10500016);辽宁省科技重大专项(2019 JH 1/10100024)
更新日期/Last Update: 2022-07-15