[1] Park J S, Darlington T, Starr A F , et al. Multiple healing effect of thermally activated self-healing composites based on Diels-Alder reaction[J]. Composites Science and Technology, 2010, 70(15): 2154-2159.[2] Koetteritzsch J, Stumpf S, Hoeppener S, et al. One-component intrinsic self-healing coatings based on reversible crosslinking by Diels-Alder cycloadditions[J]. Macromolecular Chemistry and Physics, 2013, 214(14): 1636-1649.[3] Ehrhardt D, Durme K V, Jansen J, et al. Self-healing UV-curable polymer network with reversible Diels-Alder bonds for applications in ambient conditions[J]. Polymer, 2020, 203: 122762.[4] Vahedi M, Barzin J, Shokrolahi F, et al. Self-healing, injectable gelatin hydrogels cross-linked by dynamic Schiff base linkages support cell adhesion and sustained release of antibacterial drugs[J]. Macromolecular Materials and Engineering, 2018, 303(9): 201800200-1-201800200-10.[5] Fan Wuhou, Jin Yong, Shi Liangjie, et al. Developing visible-light-induced dynamic aromatic Schiff base bonds for room-temperature self-healable and reprocessable waterborne polyurethanes with high mechanical properties[J]. Journal of Materials Chemistry (A), 2020, 8(14): 6757-6767.[6] Yu Feng, Cao Xiaodong, Du Jie, et al. Multifunctional hydrogel with good structure integrity, self-healing, and tissue-adhesive property formed by combining Diels-Alder click reaction and acylhydrazone bond[J]. ACS Applied Materials & Interfaces, 2015, 7(43): 24023-24031.[7] Andersen A, Krogsgaard M, Birkedal H. Mussel-inspired self-healing double-cross-linked hydrogels by controlled combination of metal coordination and covalent cross-linking[J]. Biomacromolecules, 2018, 19(5): 1402-1409.[8] Han Yangyang, Wu Xiaodong, Zhang Xinxing, et al. Self-hea-ling, highly sensitive electronic sensors enabled by metal-ligand coordination and hierarchical structure design[J]. ACS Applied Materials & Interfaces, 2017, 9(23): 20106-20114.[9] Zhang Congcong, Jing Lu, Lin Sha, et al. Helical self-assembly of optically active phthalocyanine derivatives: Effect of Zn—O coordination bond on morphology and handedness of nanostructures[J]. ChemPhysChem, 2013, 14(16): 3827-3833.[10] Zhang Rongchun, Yan Tingzi, Lechner B D, et al. Heteroge-neity, segmental and hydrogen bond dynamics, and aging of supramolecular self-healing rubber[J]. Macromolecules, 2013, 46(5): 1841-1850. [11] Chen Shuo, Bi Xiaoping, Sun Lijie, et al. Poly(sebacoyl diglyceride) cross-linked by dynamic hydrogen bonds: A self-healing and functionalizable thermoplastic bioelastomer[J]. ACS Applied Materials & Interfaces, 2016, 8(32): 20591-20599.[12] He Mengnan, Chen Xiaosong. Two-dimensional self-healing hydrogen-bond-based supramolecula polymer film[J]. Chinese Chemical Letters, 2019, 30(5): 41-45.[13] Wang Xiaoping, Liang Dong, Cheng Bingkun. Preparation and research of intrinsic self-healing elastomers based on hydrogen and ionic bond[J]. Composites Science and Technology, 2020, 193: 108127.[14] Zhang Zhifei, Yang Kun, Zhao Shugao, et al. Self-healing behavior of ethylene propylene diene rubbers based on ionic association[J]. 高分子科学(英文版), 2019(7): 700-707.[15] Xu Chuanhui, Cao Liming, Huang Xunhui, et al. Self-healing natural rubber with tailorable mechanical properties based on ionic supramolecular hybrid network[J]. ACS Applied Materials & Interfaces, 2017, 9(34): 29363-29373.[16] 栗敬君. 高性能天然橡胶Zn(MAA)2 /S复合硫化体系的研究[D]. 青岛: 青岛科技大学, 2017.[17] 潘岩, 赵素合, 李颀. 增强氢化丁腈橡胶的结构与性能[J]. 合成橡胶工业, 2009, 32(3): 232-237.[18] Zhao Xingbo, Zhang Qiuyu, Gu Junwei, et al. Effects of carbon black on the properties of HNBR reinforced by in-situ prepared ZDMA[J]. Journal of Macromolecular Science (Part D): Reviews in Polymer Processing, 2011, 50(15): 1507-1510.[19] Li Chengjie, Yuan Zun, Ye Lin. Facile construction of enhanced multiple interfacial interactions in EPDM/zinc dimethacrylate (ZDMA) rubber composites: Highly reinforcing effect and improvement mechanism of sealing resilience[J]. Composites (Part A): Applied Science and Manufacturing, 2019,126: 105580.[20] Thulasiram G, HuntJ O, Francik W P, et al. Self-healing materials and use thereof for extending the lifespan of a tire:US, 2008173382[P]. 2008-07-24.[21] 徐传辉. 甲基丙烯酸锌(镁)原位聚合补强橡胶的交联网络及性能的研究[D]. 广州:华南理工大学, 2013.