|本期目录/Table of Contents|

[1]王 琳,孙文硕,王晨露,等.基于离子超分子网络实现自修复天然橡胶的制备[J].合成橡胶工业,2022,4:279-284.
 WANG Lin,SUN Wen-shuo,WANG Chen-lu,et al.Preparation of self-healing natural rubber based on[J].China synthetic rubber industy,2022,4:279-284.
点击复制

基于离子超分子网络实现自修复天然橡胶的制备(PDF)

《合成橡胶工业》[ISSN:1000-1255/CN:62-1036/TQ]

期数:
2022年4期
页码:
279-284
栏目:
出版日期:
2022-07-15

文章信息/Info

Title:
Preparation of self-healing natural rubber based on
文章编号:
1000-1255(2022)04-0279-06
作者:
王 琳孙文硕王晨露杜爱华
青岛科技大学 橡塑材料与工程教育部重点实验室,山东 青岛 266042
Author(s):
WANG Lin SUN Wen-shuo WANG Chen-lu DU Ai-hua
Key Laboratory of Rubber-Plastics of Ministry of Education, Qingdao University of Science and Technology, Qingdao 266042, China
关键词:
天然橡胶不饱和羧酸盐离子超分子网络自修复耐屈挠疲劳性能
Keywords:
natural rubber unsaturated carboxylate ionic supramolecular network self-healing flexure fatigue resistance
分类号:
TQ 332.5
DOI:
DOI:10.19908/j.cnki.ISSN1000-1255.2022.04.0279
文献标识码:
A
摘要:
将甲基丙烯酸锌(ZDMA)或聚(甲基丙烯酸锌)低聚物(PM)引入到天然橡胶中,同时并用炭黑/白炭黑与天然橡胶共混,制备一种具有自修复性能的耐屈挠疲劳橡胶。研究结果表明,与PM相比,ZDMA可形成以离子交联为主的可逆超分子网络,赋予了硫化胶更好的自修复功能,当其用量为40份(质量)时硫化胶的自修复效率最高,接近100%。不饱和羧酸盐(ZDMA或PM)与传统填料(炭黑和白炭黑)并用时,PM仅在前期可有效抑制裂纹的扩展,ZDMA可明显提高材料的耐屈挠疲劳性能,当m(ZDMA)/m(炭黑)为20/40时硫化胶的耐屈挠疲劳性能最好。
Abstract:
Zinc methacrylate (ZDMA) or poly (zinc methacrylate) oligomer (PM) were introduced into natural rubber or blended with carbon black/silica and natural rubber to prepare a flexible fatigue resistant rubber with self-healing property. The results showed that ZDMA had better self-hea-ling than PM because of the reversible supramolecular network. When the amount of ZDMA was 40 phr, the self-healing efficiency of vulcanizate was the highest, close to 100%. Unsaturated carboxylate (ZDMA/PM) was combined with traditional fillers (carbon black/silica), PM could effectively inhibit crack propagation only in the early stage, and ZDMA could significantly improve the flexure resistance of the material. The vulcanizate had the best flexural fatigue resistance when m(ZDMA)/m(carbon black)was 20/40.

参考文献/References

[1] Park J S, Darlington T, Starr A F , et al. Multiple healing effect of thermally activated self-healing composites based on Diels-Alder reaction[J]. Composites Science and Technology, 2010, 70(15): 2154-2159.[2] Koetteritzsch J, Stumpf S, Hoeppener S, et al. One-component intrinsic self-healing coatings based on reversible crosslinking by Diels-Alder cycloadditions[J]. Macromolecular Chemistry and Physics, 2013, 214(14): 1636-1649.[3] Ehrhardt D, Durme K V, Jansen J, et al. Self-healing UV-curable polymer network with reversible Diels-Alder bonds for applications in ambient conditions[J]. Polymer, 2020, 203: 122762.[4] Vahedi M, Barzin J, Shokrolahi F, et al. Self-healing, injectable gelatin hydrogels cross-linked by dynamic Schiff base linkages support cell adhesion and sustained release of antibacterial drugs[J]. Macromolecular Materials and Engineering, 2018, 303(9): 201800200-1-201800200-10.[5] Fan Wuhou, Jin Yong, Shi Liangjie, et al. Developing visible-light-induced dynamic aromatic Schiff base bonds for room-temperature self-healable and reprocessable waterborne polyurethanes with high mechanical properties[J]. Journal of Materials Chemistry (A), 2020, 8(14): 6757-6767.[6] Yu Feng, Cao Xiaodong, Du Jie, et al. Multifunctional hydrogel with good structure integrity, self-healing, and tissue-adhesive property formed by combining Diels-Alder click reaction and acylhydrazone bond[J]. ACS Applied Materials & Interfaces, 2015, 7(43): 24023-24031.[7] Andersen A, Krogsgaard M, Birkedal H. Mussel-inspired self-healing double-cross-linked hydrogels by controlled combination of metal coordination and covalent cross-linking[J]. Biomacromolecules, 2018, 19(5): 1402-1409.[8] Han Yangyang, Wu Xiaodong, Zhang Xinxing, et al. Self-hea-ling, highly sensitive electronic sensors enabled by metal-ligand coordination and hierarchical structure design[J]. ACS Applied Materials & Interfaces, 2017, 9(23): 20106-20114.[9] Zhang Congcong, Jing Lu, Lin Sha, et al. Helical self-assembly of optically active phthalocyanine derivatives: Effect of Zn—O coordination bond on morphology and handedness of nanostructures[J]. ChemPhysChem, 2013, 14(16): 3827-3833.[10] Zhang Rongchun, Yan Tingzi, Lechner B D, et al. Heteroge-neity, segmental and hydrogen bond dynamics, and aging of supramolecular self-healing rubber[J]. Macromolecules, 2013, 46(5): 1841-1850. [11] Chen Shuo, Bi Xiaoping, Sun Lijie, et al. Poly(sebacoyl diglyceride) cross-linked by dynamic hydrogen bonds: A self-healing and functionalizable thermoplastic bioelastomer[J]. ACS Applied Materials & Interfaces, 2016, 8(32): 20591-20599.[12] He Mengnan, Chen Xiaosong. Two-dimensional self-healing hydrogen-bond-based supramolecula polymer film[J]. Chinese Chemical Letters, 2019, 30(5): 41-45.[13] Wang Xiaoping, Liang Dong, Cheng Bingkun. Preparation and research of intrinsic self-healing elastomers based on hydrogen and ionic bond[J]. Composites Science and Technology, 2020, 193: 108127.[14] Zhang Zhifei, Yang Kun, Zhao Shugao, et al. Self-healing behavior of ethylene propylene diene rubbers based on ionic association[J]. 高分子科学(英文版), 2019(7): 700-707.[15] Xu Chuanhui, Cao Liming, Huang Xunhui, et al. Self-healing natural rubber with tailorable mechanical properties based on ionic supramolecular hybrid network[J]. ACS Applied Materials & Interfaces, 2017, 9(34): 29363-29373.[16] 栗敬君. 高性能天然橡胶Zn(MAA)2 /S复合硫化体系的研究[D]. 青岛: 青岛科技大学, 2017.[17] 潘岩, 赵素合, 李颀. 增强氢化丁腈橡胶的结构与性能[J]. 合成橡胶工业, 2009, 32(3): 232-237.[18] Zhao Xingbo, Zhang Qiuyu, Gu Junwei, et al. Effects of carbon black on the properties of HNBR reinforced by in-situ prepared ZDMA[J]. Journal of Macromolecular Science (Part D): Reviews in Polymer Processing, 2011, 50(15): 1507-1510.[19] Li Chengjie, Yuan Zun, Ye Lin. Facile construction of enhanced multiple interfacial interactions in EPDM/zinc dimethacrylate (ZDMA) rubber composites: Highly reinforcing effect and improvement mechanism of sealing resilience[J]. Composites (Part A): Applied Science and Manufacturing, 2019,126: 105580.[20] Thulasiram G, HuntJ O, Francik W P, et al. Self-healing materials and use thereof for extending the lifespan of a tire:US, 2008173382[P]. 2008-07-24.[21] 徐传辉. 甲基丙烯酸锌(镁)原位聚合补强橡胶的交联网络及性能的研究[D]. 广州:华南理工大学, 2013.

备注/Memo

备注/Memo:
更新日期/Last Update: 2022-07-15