|本期目录/Table of Contents|

[1]张君花,匡 佳,王 亮,等.用高活性和高热稳定性吡啶亚胺钛络合物催化异戊二烯聚合[J].合成橡胶工业,2022,4:271-273.
 ZHNAG Jun-hua,KUANG Jia,WANG Liang,et al.Polymerization of isoprene catalyzed by high active and thermo-stable iminopyridine-titanium complexes[J].China synthetic rubber industy,2022,4:271-273.
点击复制

用高活性和高热稳定性吡啶亚胺钛络合物催化异戊二烯聚合(PDF)

《合成橡胶工业》[ISSN:1000-1255/CN:62-1036/TQ]

期数:
2022年4期
页码:
271-273
栏目:
出版日期:
2022-07-15

文章信息/Info

Title:
Polymerization of isoprene catalyzed by high active and thermo-stable iminopyridine-titanium complexes
文章编号:
1000-1255(2022)04-0271-05
作者:
张君花匡 佳王 亮梁红文王庆刚
1.中国石化巴陵石油化工有限公司,湖南 岳阳 414000;2.中国科学院青岛生物能源与过程研究所,山东 青岛 266100
Author(s):
ZHNAG Jun-hua KUANG Jia WANG Liang LIANG Hong-wen WANG Qing-gang
1.Baling Petrochemical Co Ltd, SINOPEC, Yueyang 414000, China; 2.Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266100, China
关键词:
吡啶亚胺钛络合物顺式聚异戊二烯催化活性选择性热稳定性
Keywords:
iminopyridine-titanium complex cis-14-polyisoprene catalytic activity selectivity thermo-stability
分类号:
TQ 333.3
DOI:
DOI:10.19908/j.cnki.ISSN1000-1255.2022.04.0271
文献标识码:
B
摘要:
合成了一系列分子结构明确的吡啶亚胺钛络合物,通过核磁共振波谱、X-射线单晶衍射和元素分析对络合物的结构进行了表征,并将该类络合物作为主催化剂,以抽干的甲基铝氧烷作为助催化剂进行了异戊二烯聚合。结果表明,取代基给电子能力较强的吡啶亚胺钛络合物表现出高催化活性[6.3×104 g/(mol·h)]、高选择性(顺式-1,4-结构选择性74%)以及优异的热稳定性(聚合温度可达90 ℃);取代基位阻增加会明显降低络合物的催化活性及聚合物的分子量和顺式-1,4-结构的选择性。吡啶亚胺钛络合物的配体结构对催化活性的影响较大,但对聚合物结构选择性的影响较小。
Abstract:
A series of well-defined iminopyridine-titanium complexes were prepared and characterized by nuclear magnetic resonance spectroscopy, X-ray diffraction analysis and elemental analysis. Isoprene polymerization was carried out by using those complexes as main catalyst and dried methylaluminoxane as cocatalyst.The results showed that the iminopyridine-titanium complexes with strong electron-donating group possessed high activity (up to 6.3×104 g/(mol·h)), high cis-1,4 -unit selectivity (up to 74%) and excellent thermo-stability(up to 90 ℃). The increased steric hindrance of substituent groups would significantly reduce the catalytic acti-vity, molecular weight and cis-1,4-unit selectivity. These results indicated that the ligand structure had more effects on activity than stereo-selectivity.

参考文献/References

[1] Wang Zhaowei, Yu Junwei, Liu Xiaoxuan. Development of titanium catalyst for cis-1,4-polyisoprene rubber[J]. Chem Ind & Eng Prog, 2014, 33(11): 2941-2946.[2] Oliva L, Longo P, Grassi A, et al. Polymerization of 1,3-alkadienes in the presence of Ni- and Ti-based catalytic systems containing methylalumoxane[J]. Makromo Chem Rapid Commun, 1990, 11(11): 519-524.[3] Lopez-Sanchez J A, Lamberti M, Pappalardo D, et al. Polyme-rization of conjugated dienes promoted by bis(phenoxyimino)titanium catalysts[J]. Macromolecules, 2003, 36(24): 9260-9263.[4] Milione S, Cuomo C, Capacchione C, et al. Stereoselective polymerization of conjugated dienes and styrene-butadiene copolymerization promoted by octahedral titanium catalyst[J]. Macromolecules, 2007, 40(16): 5638-5643.[5] Annunziata L, Pragliola S, Pappalardo D, et al. New (anilidomethyl) pyridine titanium (Ⅳ) and zirconium (Ⅳ) catalyst precursors for the highly chemo- and stereoselective cis-1,4-polymerization of 1,3-butadiene[J]. Macromolecules, 2011, 44(7): 1934-1941.[6] Pampaloni G, Guelfi M, Sommazzi A, et al. Synthesis and spectroscopic characterization of titanium pyridylanilido complexes as catalysts for the polymerization of 1,3-butadiene and isoprene[J]. Inorg Chim Acta, 2019, 487: 331-338.[7] Ricci G, Italia S, Giarrusso A, et al. Polymerization of 1,3-dienes with the soluble catalyst system methylaluminoxanes-[CpTiCl3] influence of monomer structure on polymerization stereospecificity[J]. J Organomet Chem, 1993, 451(1/2): 67-72.[8] Buonerba A, Fienga M, Milione S, et al. Binary copolymerization of p-methylstyrene with butadiene and isoprene catalyzed by titanium compounds showing different stereoselectivity[J]. Macromolecules, 2013, 46(21): 8449-8457.[9] Raynaud J, Wu J Y, Ritter T. Iron-catalyzed polymerization of isoprene and other 1,3-dienes[J]. Angew Chem Int Ed, 2012, 51(47): 11805-11808.[10] Guo Lihua, Jing Xinyu, Xiong Shuoyan, et al. Influences of alkyl and aryl substituents on iminopyridine Fe (Ⅱ)- and Co (Ⅱ)-catalyzed isoprene polymerization[J]. Polymers, 2016, 8(11): 389-401.[11] Ai Pengfei, Lin Chen, Guo Yintian, et al. Polymerization of 1,3-butadiene catalyzed by cobalt(Ⅱ) and nickel(Ⅱ) complexes bearing imino- or amino-pyridyl alcohol ligands in combination with ethylaluminum sesquichloride[J]. J Organomet Chem, 2012, 705: 51-58.[12] Wang Liang, Wang Xiaowu, Hou Hongbin, et al. An unsymmetrical binuclear iminopyridine-iron complex and its catalytic isoprene polymerization[J]. Chem Comm, 2020, 56(62): 8846-8849.[13] Zhao Mengmeng, Wang Liang, Mahmood Q, et al. Highly active and thermo-stable iminopyridyl vanadium oxychloride catalyzed isoprene polymerization[J]. J Polym Sci, 2020, 58(19): 2708-2717.[14] Zhao Mengmeng, Wang Liang, Mahmood Q, et al. Controlled isoprene polymerization mediated by iminopyridine-iron(Ⅱ) acetylacetonate pre-catalysts[J]. Appl Organomet Chem, 2019, e 4836.[15] Lin Wenhua, Zhang Liping, Suo Hongyi, et al. Synthesis of characteristic polyisoprenes using rationally designed iminopyridyl metal (Fe and Co) precatalysts: Investigation of co-catalysts and steric influence on their catalytic activity[J]. New J Chem, 2020, 44(19): 8076-8084.[16] Hu Yanming, Yu Qizhou, Jiang Lianshen, et al. Iron-based ca-talysts for conjugated diene polymerization and the polymer properties[J]. Chin Sci Bull, 2016, 61(31): 3315-3325.[17] Champouret Y, Hashmi O H, Visseaux M. Discrete iron-based complexes: Applications in homogeneous coordination-insertion polymerization catalysis[J]. Coord Chem Rev, 2019, 390: 127-170.

备注/Memo

备注/Memo:
更新日期/Last Update: 2022-07-15