|本期目录/Table of Contents|

[1]王明英,王健,杜思辰,等.硅橡胶硫化体系研究进展[J].合成橡胶工业,2022,3:244-252.
 WANG Ming-ying,WANG Jian,DU Si-chen,et al.Research advance in curing system of silicone rubber[J].China synthetic rubber industy,2022,3:244-252.
点击复制

硅橡胶硫化体系研究进展(PDF)

《合成橡胶工业》[ISSN:1000-1255/CN:62-1036/TQ]

期数:
2022年3期
页码:
244-252
栏目:
出版日期:
2022-05-15

文章信息/Info

Title:
Research advance in curing system of silicone rubber
文章编号:
1000-1255(2022)03-0244-09
作者:
王明英王健杜思辰卢佳王红红赵才德于家成刁 屾
烟台大学 化学化工学院,山东 烟台 264005
Author(s):
WANG Ming-ying WANG Jian DU Si-chen LU Jia WANG Hong-hong ZHAO Cai-de YU Jia-cheng DIAO Shen
College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
关键词:
硅橡胶传统硫化体系新型硫化体系硅氢加成反应综述
Keywords:
silicone rubber traditional curing system new curing system hydrosilylation review
分类号:
TQ 330.1+3
DOI:
DOI:10.19908/j.cnki.ISSN1000-1255.2022.03.0244
文献标识码:
A
摘要:
从传统硫化体系的优化和新型硫化体系的开发两方面系统综述了硅橡胶硫化体系的研究进展,分析了有机过氧化物硫化体系的优缺点、催化剂和抑制剂对硅氢加成硫化体系的影响,以及交联剂和催化剂对官能团缩合硫化体系的影响,简要介绍了包括辐射引发硫化体系、光引发硫化体系、基于点击化学的硫化体系和可逆共价(非共价)硫化体系等在内的新型硫化体系,最后对硅橡胶硫化体系未来的发展方向提出了建议。
Abstract:
Recent research progress in curing system of silicone rubber was reviewed from the optimization of traditional vulcanization system and the development of new vulcanization system with 53 references. The advantages and disadvantages of organic peroxide curing systems, the effect of the catalysts and inhibitors on hydrosilylation curing systems, and the effect of the crosslinking agents and catalysts on functional group condensation curing systems were analyzed, and the new curing systems including radiation-induced curing systems, photoinitiated curing systems, curing systems based on click chemistry, and reversible covalent (non-covalent) curing systems were briefly introduced. Finally, some suggestions on the future development of silicone rubber curing system were also put forward.

参考文献/References

[1] Shit S C, Shah P. A review on silicone rubber[J]. National Academy Science Letters, 2013, 36(4): 355-365.[2] 马利宁, 黄艳华, 苏正涛. 硫化剂对甲基苯基硅橡胶性能的影响[J]. 有机硅材料, 2020, 34(1): 6-10.[3] 杨林, 陈勇前. 阻聚剂ZJ-701在过氧化物硫化体系胶料中的防焦烧作用研究[J]. 橡胶工业, 2019, 66(11): 843-847.[4] 蒋坤, 饶友, 陈建军, 等. 三烯丙基异氰脲酸酯对通用型过氧化物硫化体系硅橡胶的影响研究[J]. 广东化工, 2017, 44(9): 118-119.[5] 蒋坤, 饶友, 陈建军, 等. 乙氧基化三羟甲基丙烷三丙烯酸酯在通用型过氧化物硫化体系硅橡胶中的应用[J]. 山东化工, 2017(10): 29-31.[6] 陆杰, 陈新泰, 尹应乐, 等. 铂催化剂对液体硅橡胶性能的影响研究[J]. 化工新型材料, 2016, 44(6): 217-219.[7] 刘景涛, 万里鹏, 董丽杰,等. 铂催化加成型液体乙烯基硅橡胶性能[J]. 弹性体, 2008(4): 28-31.[8] 刘丽萍, 钱黄海, 苏正涛. 添加型抑制剂对高温硫化加成型硅橡胶性能的影响[J]. 有机硅材料, 2011(3): 22-25.[9] Islamova R M, Dobrynin M V, Ivanov D M, et al. Bis-nitrile and bis-dialkylcyanamide platinum(Ⅱ) complexes as efficient catalysts for hydrosilylation cross-linking of siloxane polymers[J]. Molecules, 2016, 21(3): 21030311.[10] Xi Lu, Liu Zhu, Su Jiahui, et al. UV-activated hydrosilylation of (Me-Cp)Pt(Me)3: Enhanced photocatalytic activity, polymerization kinetics, and photolithography[J]. Journal of Applied Polymer Science, 2019, 136(47): 48251.[11] 程小莲, 曾军, 张少鸿, 等. 脱醇型单组分室温硫化硅橡胶的研制[J]. 粘接, 2018, (2): 29-32.[12] 周熠, 付子恩, 郑常华. 新型单组分脱酮肟型室温硫化硅橡胶的制备[J]. 广州化工, 2020, 48(6): 60-62.[13] 黄文哲, 付子恩, 杨敦, 等. 缩合型透明硅橡胶的制备及性能研究[J]. 有机硅材料, 2018, 32(5): 361-366.[14] Ji Jianye, Ge Xin, Pang Xiaoyan, et al. Synthesis and characterization of room temperature vulcanized silicone rubber using methoxyl-capped MQ silicone resin as self-reinforced cross-linker[J]. Polymers, 2019, 11(7): 1142.[15] Yuan Zhanglin, Wang Jincheng. Preparation and characterization of incompletely condensed POSS and its application in RTV composites[J]. Journal of Elastomers and Plastics, 2017, 49(2): 157-172. [16] 董志磊. 不同催化体系RTV-1硅橡胶粘合剂的研究[D]. 天津: 天津大学, 2012.[17] 李万华, 胡新嵩, 曾祥雷, 等. 脱醇型RTV-1硅橡胶的研制[J]. 有机硅材料, 2019, 33(3): 162-165.[18] Cook S, Durand G, Easton T, et al. Compositions containing phosphonate catalysts and methods for the preparation and use of the compositions: WO, 2012134784 A 1[P]. 2012-10-04.[19] 季晓婷. 氨基三乙氧基硅烷对脱醋酸型RTV硅橡胶催化固化作用的研究[D]. 广州: 华南理工大学, 2019.[20] 杨明成, 朱军, 宋伟强, 等. 硅橡胶辐射硫化工艺研究[J]. 橡胶工业, 2003, 50(1): 39-41.[21] 索晋玄, 罗世凯, 张长生. 硅橡胶辐射交联研究[J]. 化工新型材料, 2007, 35(11): 62-64.[22] Qu Baojun, Shi Wenfang, Ranby B. Photocrosslinking of LDPE and its application for wires and cables[J]. Journal of Photopolymer Science and Technology, 1989, 2(2): 269-276.[23] 李云辉, 吕建平, 徐志前, 等. 紫外光辐射交联硅橡胶及其性能[J]. 高分子材料科学与工程, 2013, 29(1): 60-62.[24] Rambarran T, Gonzaga F, Brook M A. Generic, metal-free cross-linking and modification of silicone elastomers using click ligation[J]. Macromolecules, 2012, 45(5): 2276-2285.[25] 任芝瑞. 巯基交联硅橡胶的制备及性能研究[D]. 北京: 北京理工大学, 2017.[26] Xue Lei, Zhang Yanyan, Zuo Yujing, et al. Preparation and characterization of novel UV-curing silicone rubber via thiol-ene reaction[J]. Materials Letters, 2013, 106: 425-427[27] Diao Shen, Dong Fuying, Meng jing, et al. Preparation and properties of heat-curable silicone rubber through chloropropyl/amine crosslinking reactions[J]. Materials Chemistry and Physics, 2015, 153: 161-167.[28] 董福营. 基于氨基与氯丙基反应制备新型交联体系硅橡胶与性能研究[D]. 济南: 山东大学, 2016.[29] Dong Fuying, Diao Shen, Ma Depeng, et al. Preparation and characterization of 3-chloropropyl polysiloxane-based heat-cu-rable silicone rubber using polyamidoamine dendrimers as cross-linkers[J]. Reactive and Functional Polymers, 2015, 96: 14-20. [30] 李晓晓. 基于胺-烯反应制备液体硅橡胶及其性能研究[D]. 济南: 山东大学, 2017.[31] Babb D A, Ezzell B R, Clement K S, et al. Perfluorocyclobutane aromatic ether polymers[J]. Journal of Polymer Science (Part A): Polymer Chemistry, 1993, 31(13): 3465-3477.[32] Zhou Junfeng, Tao Yangqing, Chen Xiaoyao, et al. Perfluorocyclobutyl-based polymers for functional materials[J]. Materials Chemistry Frontiers, 2019, 3(7): 1280-1301. [33] 岳彩利. 含全氟环丁基结构有机硅聚合物的制备及性能研究[D]. 济南: 山东大学, 2017.[34] Yuan Yan, Diao Shen, Zhao Caide, et al. Synthesis of polysiloxanes containing trifluoroethylene aryl ether groups: The effect of promoters[J]. Polymers for Advanced Technologies. 2020, 31(5): 1127-1138.[35] Zhao Jian, Xu Rui, Luo Gaoxing, et al. A self-healing, re-moldable and biocompatible crosslinked polysiloxane elastomer[J]. Journal of Materials Chemistry (B): Materials for Biology and Medicine, 2016, 4(5): 982-989.[36] Li Xinpan, Yu Ran, Zhao Tingting, et al. A self-healing polysiloxane elastomer based on siloxane equilibration synthesized through amino-ene Michael addition reaction[J]. European Polymer Journal, 2018, 108: 399-405. [37] Xiang Hongping, Rong Minzhi, Zhang Mingqiu. A facile method for imparting sunlight driven catalyst-free self-heal ability and recyclability to commercial silicone elastomer[J]. Polymer, 2017, 108: 339-347[38] 陈名家. 还原响应型淀粉基聚合物胶束的制备及其作为药物载体的研究[D]. 兰州: 兰州大学, 2016.[39] Zhang Baolin, Zhang Ping, Zhang Hanzhi, et al. A transparent, highly stretchable, autonomous self-healing poly(dimethyl siloxane) elastomer[J]. Macromolecular Rapid Communications, 2017, 38(15): 1700110.[40] Lei Xingyue, Huang Yawen, Liang Shuai, et al. Preparation of highly transparent, room-temperature self-healing and recyclable silicon elastomers based on dynamic imine bond and their ion responsive properties[J]. Materials Letters, 2020, 268: 127598.[41] Yan Hao, Dai Shengping, Chen Yuewen, et al. A high stre-tchable and self-healing silicone rubber with double reversible bonds[J]. ChemistrySelect, 2019, 4(36): 10719-10725.[42] Yang Zhipeng, Li Hongqiang, Zhang Lin, et al. Highly stre-tchable, transparent and room-temperature self-healable polydimethylsiloxane elastomer for bending sensor[J]. Journal of Colloid and Interface Science, 2020, 570: 1-10.[43] Fawcett A S, Brook M A. Thermoplastic silicone elastomers through self-association of pendant coumarin groups[J]. Macromolecules, 2014, 47: 1656-1663.[44] Fawcett A S, Hughes T C, Zepeda-Velazquez L, et al. Phototunable cross-linked polysiloxanes[J]. Macromolecules, 2015, 48(18): 6499-6507.[45] Kang Jiheong, Son Donghee, Wang Ging-Ji Nathan, et al. Tough and water-insensitive self-healing elastomer for robust electronic skin[J]. Advanced Materials, 2018, 30(13): 1706846.[46] Liu Yuetao, Zhang Kaiming, Sun Jiawen, et al. A type of hydrogen bond cross-linked silicone rubber with the thermal-induced self-healing properties based on the nonisocyanate reaction[J]. Industrial & Engineering Chemistry Research, 2019, 58(47): 21452-21458.[47] Jia Xiaoyong, Mei Jinfeng, Lai Jiancheng, et al. A self-healing PDMS polymer with solvatochromic properties[J]. Chemical Communications, 2015, 51(43): 8928-8930.[48] Jia Xiaoyong, Mei Jinfeng, Lai Jiancheng, et al. A highly stretchable polymer that can be thermally healed at mild temperature[J]. Macromolecular Rapid Communications, 2016, 37(12): 952-956.[49] Li Chenghui, Wang Chao, Keplinger C, et al. A highly stre-tchable autonomous self-healing elastomer[J]. Nature Chemistry, 2016, 8(6): 618-624. [50] Burattini S, Colquhoun H M, Greenland B W, et al. A novel self-healing supramolecular polymer system[J]. Faraday Discussions, 2009, 143: 251-264.[51] Lu Hang, Feng Shengyu. Supramolecular silicone elastomers with healable and hydrophobic properties crosslinked by “salt-forming vulcanization”[J]. Journal of Polymer Science (Part A): Polymer Chemistry, 2017, 55(5): 903-911.[52] Wu Xianzhang, Wang Jinqing, Huang Jingxia, et al. Robust, stretchable and self-healable supramolecular elastomers synergistically crosslinked by hydrogen bonds and coordination bonds[J]. ACS Applied Materials & Interfaces, 2019, 11(7): 7387-7396.[53] An Soyoung, Noh Seungman, Oh Jungkwon. Multiblock copolymer-based dual dynamic disulfide and supramolecular crosslinked self-healing networks[J]. Macromolecular Rapid Communications, 2017, 38(8): 1600777.

备注/Memo

备注/Memo:
国家自然科学基金资助项目51603178);特种功能聚集体材料教育部重点实验室开放基金资助项目。
更新日期/Last Update: 2022-05-15