|本期目录/Table of Contents|

[1]牛林伟,贾帅博,邹威,等.预拉伸对硅橡胶介电性能的影响[J].合成橡胶工业,2022,3:218-222.
 NIU Lin-wei,JIA Shuai-bo,ZOU Wei,et al.Effect of prestretching on dielectric properties of silicone rubber[J].China synthetic rubber industy,2022,3:218-222.
点击复制

预拉伸对硅橡胶介电性能的影响(PDF)

《合成橡胶工业》[ISSN:1000-1255/CN:62-1036/TQ]

期数:
2022年3期
页码:
218-222
栏目:
出版日期:
2022-05-15

文章信息/Info

Title:
Effect of prestretching on dielectric properties of silicone rubber
文章编号:
1000-1255(2022)03-0218-05
作者:
牛林伟贾帅博邹威张晨
北京化工大学 材料科学与工程学院/碳纤维及功能高分子教育部重点实验室, 北京 100029
Author(s):
NIU Lin-wei JIA Shuai-bo ZOU Wei ZHANG Chen
(College of Materials Science and Engineering/Key Laboratory of Carbon Fiber and Functional Polymers of Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China)
关键词:
介电弹性体硅橡胶介电性能交联密度能量损耗预拉伸
Keywords:
dielectric elastomer silicone rubber dielectric property cross-linking density energy loss prestretching
分类号:
TQ 333.93
DOI:
DOI:10.19908/j.cnki.ISSN1000-1255.2022.03.0218
文献标识码:
B
摘要:
以液体硅橡胶DC 186为基体,通过控制交联体系的用量制备了不同的硅橡胶薄膜材料,研究了交联程度对硅橡胶材料力学性能影响,研究了预拉伸程度和持续时间对硅橡胶材料介电性能的影响。结果表明,交联程度的增加会降低硅橡胶分子链运动中的能量损耗;由于预拉伸使得分子链上的极性基团活性降低,发生取向极化的概率减小,因此预拉伸程度越高、预拉伸持续时间越长,硅橡胶材料的介电常数越小,低频下的介电损耗越大。
Abstract:
With liquid silicone rubber DC 186 as the matrix, different silicone rubber film materials were prepared by regulating the amount of cross-linking system. The effect of cross-linking degree on mechanical properties of silicone rubber materials and the effects of the prestretching degree and duration on dielectric properties of silicone rubber materials were studied. The results showed that the increase in cross-linking degree could reduce the energy loss in the movement of silicone rubber molecular chain. Because the prestretching reduced the activity of polar groups on the molecular chain and the probability of orientation polarization, the higher the prestretching degree and the longer the prestretching duration, the smaller the dielectric constant of silicone rubber material and the higher the dielectric loss at low frequency.

参考文献/References

[1] Brochu P, Pei Qibing. Advances in dielectric elastomers for actuators and artificial muscles[J]. Macromolecular Rapid Communications, 2010, 31(1): 10-36.[2] Giousouf M, Kovacs G. Dielectric elastomer actuators used for pneumatic valve technology[J]. Smart Materials and Structures, 2013, 22(10): 104010.[3] Zhang Ling, Wang Dongrui, Hu Penghao, et al. Highly improved electro-actuation of dielectric elastomers by molecular grafting of azobenzenes to silicon rubber[J]. Journal of Materials Chemistry (C): Material for Optical, Magnetic and Electronic Devices, 2015, 3(19): 4883-4889.[4] Cao Chongjing, Hill T L, Li Bo, et al. Uncovering isolated resonant responses in antagonistic pure-shear dielectric elastomer actuators[J]. Soft Science, 2021, 1(1): 1-19.[5] 王锦成, 陈月辉, 王继虎, 等. 甲基乙烯基硅橡胶/有机蒙脱土母炼胶纳米复合材料的制备结构与性能[J]. 合成橡胶工业, 2008, 31(3): 227-231.[6] Zhong-Liu Xueying, Jin Jiayi, Zheng Danying, et al. Influence of super-hydrophobic silicone rubber substrate on the growth and differentiation of human lens epithelial cells[J]. Journal of Materials Science: Materials in Medicine, 2018, 29(11): 176-181.[7] Cao Xunuo, Zhang Mingqi, Zhang Zhen, et al. Review of soft linear actuator and the design of a dielectric elastomer linear actuator[J]. Acta Mechanica Solida Sinica, 2019, 32(2): 566-579.[8] Li Jinrong, Liu Liwu, Liu Yanju, et al. Dielectric elastomer spring-roll bending actuators: Applications in soft robotics and design[J]. Soft Robotics, 2019, 6(1): 69-81.[9] 闫茜茜, 何田. 一种基于介电弹性体驱动的软体机器人设计方法[J]. 青岛大学学报(工程技术版), 2021, 36(3):1-5.[10] 程阳, 曹杰, 王营博, 等. 介电弹性体驱动液体透镜的设计与分析[J]. 光学学报, 2021, 41(5): 158-167.[11] Wissler M, Mazza E. Modeling of a pre-strained circular actuator made of dielectric elastomers[J]. Sensors and Actuators (A): Physical, 2005, 120(1): 184-192. [12] Li Bo, Chen Hualing, Qiang Junhua, et al. Effect of mechanical pre-stretch on the stabilization of dielectric elastomer actuation[J]. Journal of Physics (D): Applied Physics, 2011, 44(15): 155301.[13] 陈花玲, 周进雄. 介电弹性体智能材料力电耦合性能及其应用[M]. 北京: 科学出版社, 2017: 80-96.[14] Tran Danhquang, Li Jin, Xuan Fuzhen. A method to analyze the voltage-actuation response of a pre-strained circular dielectric elastomer actuator model[J]. Journal of Shanghai Jiaotong University (Science), 2017, 22(3): 334-342.[15] 颜慧贤, 苏恒迪, 林伟. 多场耦合作用下光热敏感介电凝胶的力电耦合变形行为[J]. 高分子通报, 2020(2): 38-46.[16] Kumar D, Sarangi S. Electro-mechanical instability modelling in elastomeric actuators: A second law of thermodynamics-based approach[J]. Soft Materials, 2019, 17(3): 308-320.[17] Kumar D, Sarangi S. Electro-magnetostriction under large deformation: Modeling with experimental validation[J]. Mechanics of Materials, 2019, 128:1-10.[18] 孙耿. 掺杂液态金属的介电弹性体力电耦合行为及其应用研究[D]. 西安: 西安理工大学, 2020.[19] 张星烁, 蒋志成, 王兆波. SBS增容LDPE/WGRT TPE的Mullins效应及其可逆回复行为[J]. 青岛科技大学学报(自然科学版), 2020, 41(5): 88-94.[20] Zhao Hang, Wang Dongrui, Zha Junwei, et al. Increased electroaction through a molecular flexibility tuning process in TiO2-polydimethylsilicone nanocomposites[J]. Journal of Materials Chemistry A , 2013, 1(9): 3140-3145.[21] 施江吉, 孙文杰, 马梓淇, 等. 预拉伸对介电弹性体复合材料介电性能和驱动性能的影响研究[J]. 绝缘材料, 2016, 49(9): 66-71.

备注/Memo

备注/Memo:
更新日期/Last Update: 2022-05-15