[1] Li Feizhou, Lu Zhenlin. A Combined eperimental and molecular dynamics simulation study on the miscibility of eucommia ulmoides gum with several rubbers[J]. Polymers & Polymer Composites,2017,25(1):87-92.[2] Li Feizhou, Lu Zhenlin, Xi Yuntao, et al. Molecular dynamics simulation study of eucommia ulmoides gum/Ag nanoparticle [J]. Advanced Blends Letters,2017,26(4):109-117.
[3] Zhang Jichuan, Zhang Tianxin, Dong Mengjie, et al. Study on degrees of mesomorphic zone of polymer(Ⅰ): Determination of degrees of crystallinity of Eucommia ulmoides gum and natural rubber by dynamic mechanical thermal analysis[J]. Polymer Testing,2017,63:511-520.
[4] Zhang Jichuan, Zhang Tianxin, Dong Mengjie, et al. Study on degrees of mesomorphic zone of Polymer(II): Determination of the degree of mesomorphic zone of eucommia ulmoides gum and natural rubber by dynamic mechanical thermal analysis and differential scanning calorimetry[J]. Polymer Testing,2017,63:550-557.
[5] Liu Genshi, Zhang Xi, Zhang Jichuan, et al. Determination of the content of Eucommia ulmoides gum by variable temperature Fourier transform infrared spectrum[J]. Polymer Testing,2017,63:582-586.
[6] Li Yu, Wang Dawei, Li Zhouqi, et al. A molecular genetic linkage map of Eucommia ulmoides and quantitative trait loci (QTL) analysis for growth traits[J]. International Journal of Molecular Sciences,2014,15(2):2053-2074.
[7] Li Yu, Wang Shuhui, Li Zhouqi, et al. Genetic diversity and relationships among Chinese Eucommia ulmoides cultivars revealed by sequence-related amplified polymorphism, amplified fragment length polymorphism, and inter-simple sequence repeat markers[J]. Genet Mol Res,2014,13(4): 8704-8713.
[8] Li Yu, Wei Yongcheng, Li Zhouqi, et al. Relationship between progeny growth performance and molecular marker-based genetic distances in Eucommia ulmoides parental genotypes[J]. Genet Mol Res,2014,13(3):4736-4746.
[9] Jin Cangfu, Li Zhouqi, Li Yu, et al. Transcriptome analysis of terpenoid biosynthetic genes and simple sequence repeat marker screening in Eucommia ulmoides[J]. Molecular Biology Reports,2020,47(3):1979-1990.
[10] Jin Cangfu, Li Zhouqi, Li Yu, et al. Update of genetic linkage map and QTL analysis for growth traits in Eucommia ulmoides oliver[J]. Forests,2020.11(3):311.
[11] Hiroyuki K, Nobuaki S, Yuji T, et al. Two Eucommia farnesyl diphosphate synthases exhibit distinct enzymatic properties leading to end product preferences[J]. Biochimie,2017,139:95-106.
[12] Takeshi B, Michiko M, Koichirou G, et al. Contribution of mevalonate and methylerythritol phosphate pathways to polyisoprenoid biosynthesis in the rubber-producing plant Eucommia ulmoides oliver[J]. Zeitschrift fur Naturforschung (C): A Journal of Biosciences,2010,65(5/6):363-372.
[13] Wuyun Tana, Wang Lin, Du Hongyan, et al. The hardy rubber tree genome provides insights into the evolution of polyisoprene biosynthesis[J]. Mol Plant, 2018,11(3):429-442.
[14] Wuyun Tana, Liu Huimin, Lu Yan, et al. Genome-wide screening of long non-coding RNAs involved in rubber biosynthesis in Eucommia ulmoides[J]. J Integr Plant Biol,2018,60(11):1070-1082.
[15] Li Yun, Wei Hairong, Kang Xiangyang, et al. High-quality de novo assembly of the Eucommia ulmoides haploid genome provides new insights into evolution and rubber biosynthesis[J]. Hortic Res,2020,7:183.
[16] 严瑞芳,薛兆弘. 高弹性杜仲橡胶及其硫化弹性机理[J]. 弹性体,1991,1(3):12-15.
[17] 李永鑫. 杜仲胶嘉庆改性研究[D]. 北京:北京化工大学, 2015.
[18] 赵鑫. 杜仲胶弹性体的制备及性能研究[D]. 北京:北京化工大学, 2017.
[19] Qi Xin, Zhao Xin, Li Yongxin, et al. A high toughness elastomer based on natural Eucommia ulmoides gum[J]. Journal of Applied Polymer Science, 2021,138(11):1-11.
[20] 杨凤,王芳,方庆红,等. 乳液法环氧化改性天然杜仲胶[J]. 高分子材料科学与工程,2015,31(5):56-61.
[21] 龚兴宇,王芳,宫衍革,等. 天然杜仲胶的环氧化改性[J]. 合成橡胶工业,2016,39(5):352-356.
[22] Yang Feng, Liu Qi, Li Xiangyu, et al. Epoxidation of Eucommia ulmoides gum by emulsion process and the performance of its vulcanizates[J]. Polymer Bulletin,2017,74(9):3657-3672.
[23] 杨凤,姚琳,刘奇,等. 环氧化改性杜仲胶与合成反式-1,4-聚异戊二烯的性能对比[J]. 高分子材料科学与工程,2017,33(10):45-52.
[24] Qi Xin, Zhang Jichan, Zhang Liqun, et al. Bio-based cyclized Eucommia ulmoides gum elastomer for promising damping applicationse[J]. RCS Advances,2019,72(9):42367-42374.
[25] Zhao Jie, Zhang Hengchen, Xie Meran, et al. Binary Modification of Eucommia ulmoides gum toward elastomer with tunable mechanical properties and good compatibility[J]. Journal of Polymer Science (Part A):Polymer Chemistry,2019,57(11):1247-1255.
[26] Zhang Hengchen, Ma Cuihong, Xie Meiran, et al. Sustainable elastomer of triazolinedione-modified Eucommia ulmoides gum with enhanced elasticity and shape memory capability[J]. Polymer,2019,184(5):121904.
[27] 赵杰. 可紫外交联的耐磨杜仲胶弹性体的制备和性能研究[D]. 上海:华东师范大学,2019.
[28] 李娜. 功能化杜仲胶弹性体的制备及性能研究[D]. 北京:北京化工大学,2019.
[29] 杨凤,孟祥晴,于欢. 杜仲胶接枝甲基丙烯酸丁酯的合成与表征[J]. 高分子材料科学与工程,2017,33(4):19-24.
[30] 代丽,王文远,周金琳,等. 杜仲胶接枝对苯乙烯磺酸钠的研究[J]. 沈阳化工大学学报,2019,33(2):145-150.
[31] Takashi T, Kenichi T, Hiroshi U, et al. Maleated trans-1,4-polyisoprene from Eucommia ulmoides oliver with dynamic network structure and its shape memory property[J]. Polymer,2014,55(25):6488-6493.
[32] Cunnen J I, Higgins G M C, Watson W F. Cis-trans isomerization in polyisoprenes(Part V):The isomerization of natural rubber, gutta-percha, squalene, cis-and trans-3-methylpent-2-ene, and cis-polybutadiene, and its quantitative estimation[J]. Journal of Polymer Science,1959,40(136):1-13.
[33] Dong Mengjie, Zhang Tianxin, Zhang Jichuan, et al. Mechanism analysis of Eucommia ulmoides gum reducing the rolling resistance and the application study in green tires[J]. Polymer Testing,2020,87:106539.
[34] 张天鑫. 杜仲胶/天然橡胶共混胶的相态分布和性能的研究[D]. 北京:北京化工大学,2017.
[35] 牟悦兴. 杜仲/天然并用胶共混性能研究[D]. 沈阳:沈阳化工大学,2018.
[36] 王琪. 丁腈橡胶基复合材料在阻尼领域的应用研究[D]. 北京:北京化工大学,2020.
[37] 邹洪丽. 混炼工艺对杜仲胶/天然橡胶共混胶性能的影响[D]. 沈阳:沈阳化工大学,2020.
[38] 牛娜娜. 丁苯/杜仲共混胶结构和性能的研究[D]. 北京:北京化工大学,2020.
[39] 张超. 杜仲/天然并用胶的热氧老化与防护研究[D]. 沈阳:沈阳化工大学,2020.
[40] 王彦. 天然杜仲橡胶的提取改性应用及其形状记忆材料的制备[D]. 青岛:青岛科技大学,2016.
[41] Sun Qianqian, Zhao Xinkun, Peng Pai, et al. Preparation and characterization of nanocrystalline cellulose/Eucommia ulmoides gum nanocomposite film[J]. Carbohydrate Polymers: Scientific and Technological Aspects of Industrially Important Polysaccharides,2018,181(1):825-832.
[42] Diao She, Dong Juane, Peng Pai, et al. Development of black and biodegradable biochar/gutta percha composite films with high stretchability and barrier properties[J]. Composites Science and Technology,2019,175(3):1-5.
[43] Yang Huahua, Peng Pai, Sun Qianqian, et al. Developed carbon nanotubes/gutta percha nanocomposite films with high stretchability and photo-thermal conversion efficiency[J]. Journal of Materials Research and Technology,2020,9(4):8884-8895.
[44] Yang Yichun, Peng Pai, Dong Juane, et al. Fabrication of renewable gutta percha/silylated nanofibers membrane for highly effective oil-water emulsions separation[J]. Applied Surface Science,2020,530(15):147163.
[45] Xu Jikun, Liu Bingchuan, Hu Jingping, et al. Ionic liquid mediated technology for fabrication of cellulose film using gutta percha as an additive[J]. Industrial Crops and Products,2017,108(1):140-148.
[46] Yue Panpan, Leng Zejian, Bian Jing, et al. Fast and simple construction of composite films with renewable Eucommia ulmoides gum and Poly(ε-caprolactone)[J]. Composites Science and Technology,2019,179:145-151.
[47] 侯晋燕,马庆驰,张培文,等. 基于记忆功能的杜仲胶/天然胶并用胶的制备与力学性能[J]. 沈阳化工大学学报,2015,29(4):311-316.
[48] 王彦,高晗,夏琳,等. 杜仲胶/聚丁烯-1形状记忆复合材料的制备与性能[J]. 高分子材料科学与工程,2019,35(8):118-124.
[49] Xia Lin, Zhang Meng, Qiu Guixue, et al. Thermal- and water-induced shape memory Eucommia ulmoides rubber and microcrystalline cellulose composites[J]. Polymer Testing,2019,77:105910.
[50] Shi Feifei, Xia Lin, Xin Zhenxiang. Effect of sulfur amount on properties of TPI/PBS shape memory blends[C]//AIP Conference Proceedings. USA:AIP publishing,2017:020010.
[51] Kang Hailan, Gong Ming, Zhang Liqun, et al. Fabricated biobased Eucommia ulmoides gum/polyolefin elastomer thermoplastic vulcanizates into a shape memory material[J]. Industrial & Engineering Chemistry Research,2019,58(16):6375-6384.
[52] Wang Yan, Xia Lin, Xin Zhenxiang. Triple shape memory effect of foamed natural Eucommia ulmoides gum/high-density polyethylene composites[J]. Polymers for Advanced Technologies,2017,29(1):190-197.
[53] Wang Yan, Liu Jinhui, Xia Lin, et al. Fully biobased shape memory thermoplastic vulcanizates from poly(lactic acid) and modified natural Eucommia ulmoides gum with co-continuous structure and super toughness[J]. Polymers,2019,11(12):2040.
[54] Kang Hailan, Xu Mingze, Zhang Jichuan, et al. Heat-responsive shape memory Eucommia ulmoides gum composites reinforced by zinc dimethacrylate[J]. Journal of Applied Polymer Science,2020,137(38):49133.
[55] Xie Meiran, Li Hongfei, Wu Jianhua, et al. Triazolinedione-based Alder-ene modification of Eucommia ulmoide gum to flexible polyelectrolyte and ion gel[J]. Reactive & Functional Polymers,2018,132:104-111.
[56] Chen Bo, Liu Yali, Lin Kaidong, et al. A novel and green method to synthesize a epoxidized biomass Eucommia gum as the nanofiller in the epoxy composite coating with excellent anticorrosive performance[J]. Chemical Engineering Journal,2020,379(1):122323
[57] Zhang Jichuan, Xue Zhaohong. Study on under-water sound absorption properties of Eucommia ulmoides gum and its blends[J]. Polymer Bulletin,2011,67(3):511-525.
[58] 周美慧. 丁基橡胶/杜仲橡胶高阻尼材料的制备与性能研究[D]. 沈阳:沈阳化工大学,2020.
[59] Qi Xin, Zhang Jichan, Zhang Liqun, et al. Bio-based self-healing Eucommia ulmoides ester elastomer with damping and oil resistance[J]. Journal of Materials Science,2020,55(11):4940-4951.